

Towards Stable Test-Time Adaptation in Dynamic Wild World

Shuaicheng Niu*, Jiaxiang Wu*, Yifan Zhang*, Zhiquan Wen, Yaofo Chen, Peilin Zhao and Mingkui Tan

South China University of Technology, Tencent AI Lab, National University of Singapore

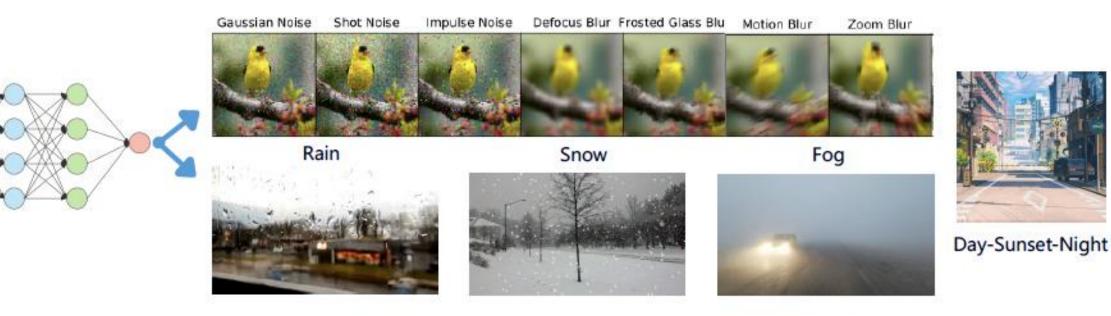
Why Unstable Test-Time Adaptation?

Our method

Experimental Results

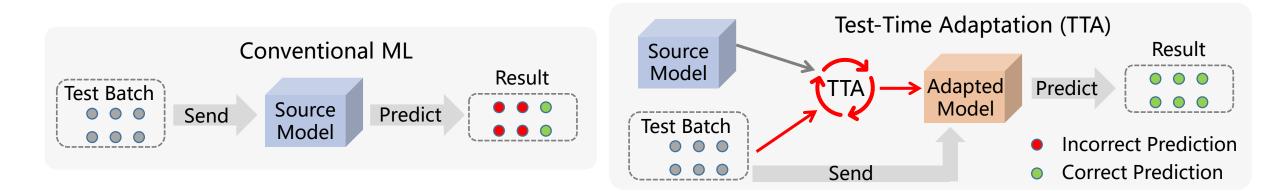
Background: Test Data Shifts

- Deep models are often very sensitive when test samples encountering natural variations or corruptions (*also called distribution shifts*):
 - Weather change
 - Unexpected noises



Test-Time Adaptation for Overcoming Data Shifts

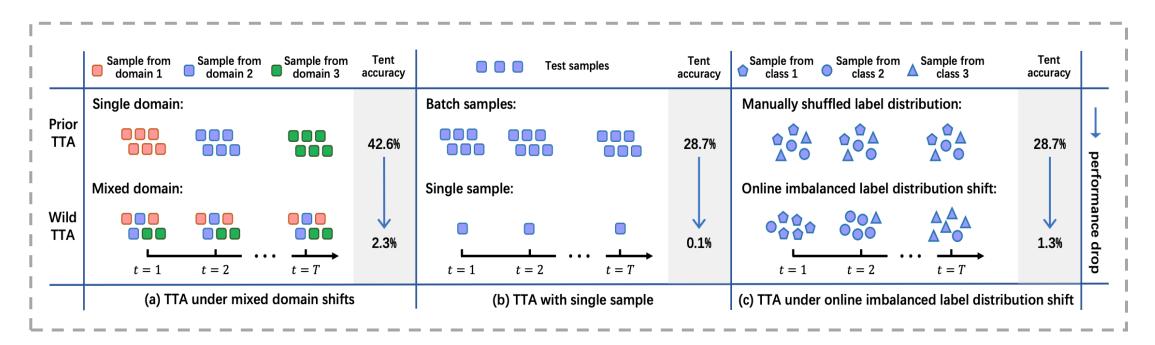
- Goal: TTA aims to adapt model to test-data domain before prediction
 - Adapt online with only unlabeled test data



The Figures are borrowed from *Uncovering Adversarial Risks of Test-Time Adaptation*.

Problem: Test-Time Adaptation in Wild World

- Limitation: TTA is unstable under wild scenarios
 - severe performance degradation, or even model collapse



• GOAL: we aim to figure out the reason why TTA is unstable in the wild world, and then boost its stability

Why Unstable Test-Time Adaptation?

Our method

Experimental Results

(A

I: What Leads to Unstable TTA?

Batch Normalization (BN) is a crucial factor hindering TTA stability under the above wild test settings

$$y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}, \text{ where } \hat{x}^{(k)} = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

BN statistics estimation would be inaccurate when test data stream has:

- Mixed Shifts: ideally each domain should have its own E and Var
- Single Sample: it is hard to estimate E and Var accurately
- Online Imbalanced Label Shifts: will bias to some specific class

Our claim: models with batch-agnostic norm layers are more suitable for TTA

I: What Leads to Unstable TTA?--Empirical Study

GN and LN models performs more stably than BN models (but still suffer several failure cases)

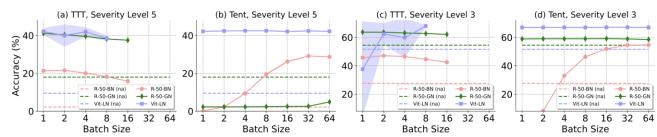
Methods:

- TTT (Sun et al., 2020)
- Tent (Wang et al., 2021)

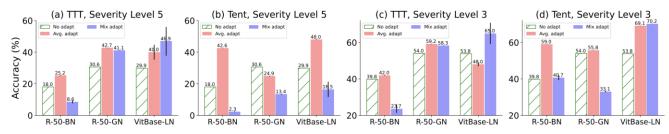
Norms:

- GN (group norm)
- LN (layer norm)
- BN (batch norm)

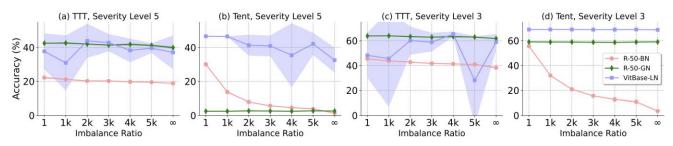
1 TTA under small batch sizes



② TTA under mixed domain shifts

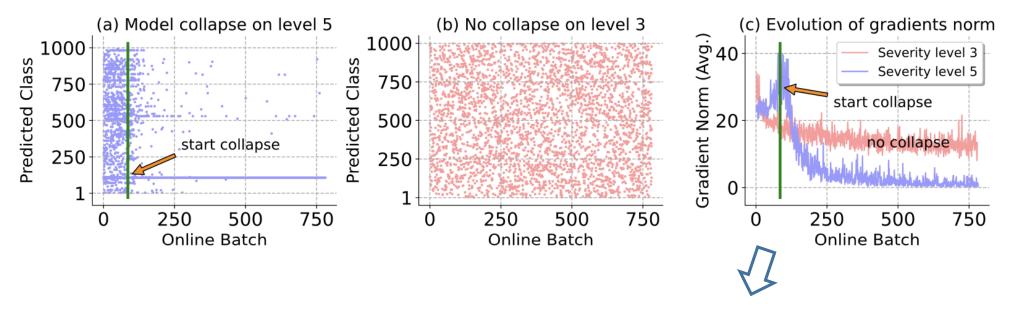


3 TTA under online imbalanced label shifts



II: What Leads to Unstable TTA?

Online entropy minimization tends to result in collapsed trivial solutions, i.e., predict all samples to the same class



Some large/noisy gradients cause collapse

Why Unstable Test-Time Adaptation?

Our method

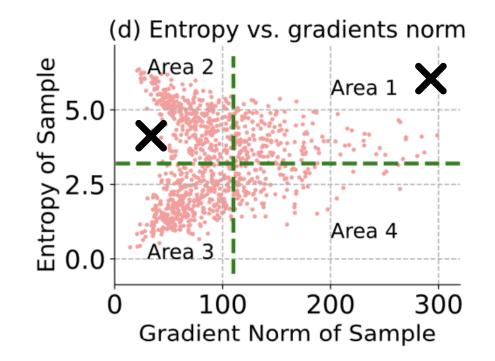
Experimental Results

Conclusion

SAR: Sharpness-Aware and Reliable Entropy Minimization

Motivation:

- We find that removing noisy gradients via gradient norm filtering is infeasible, since its threshold is hard to select
- We instead use entropy for filtering, which is easier to select threshold



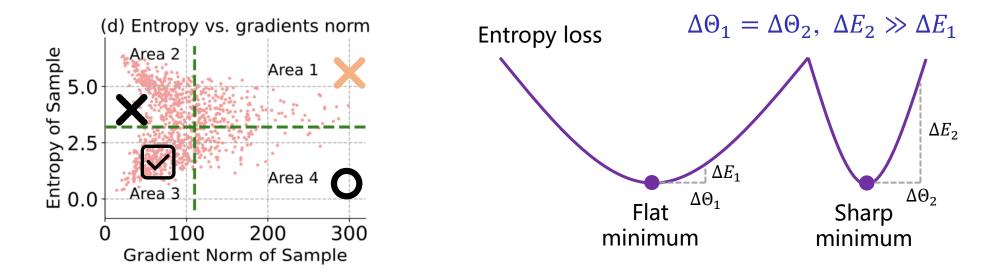
• Reliable Entropy:

• Remove samples in Areas 1 (large gradients) and Area 2 (unconfident):

$$\min_{\Theta} S(\mathbf{x}) E(\mathbf{x}; \Theta), \text{ where } S(\mathbf{x}) \triangleq \mathbb{I}_{\{E(\mathbf{x}; \Theta) < E_0\}}(\mathbf{x}).$$

where the threshold $E_0 \in (0, \ln C]$, and C is the class number

SAR: Sharpness-Aware and Reliable Entropy Minimization



• **Sharpness-Aware:** make the model more robust to large/noisy gradients in Area 4

$$\min_{\Theta} E^{SA}(\mathbf{x}; \Theta), \text{ where } E^{SA}(\mathbf{x}; \Theta) \triangleq \max_{\|\boldsymbol{\epsilon}\|_2 \le \rho} E(\mathbf{x}; \Theta + \boldsymbol{\epsilon}).$$

• We use SAM (Foret et al. 2021) to address the optimization, leading to the final objective:

$$\min_{\tilde{\Theta}} S(\mathbf{x}) E^{SA}(\mathbf{x}; \Theta)$$

 $[\]oplus$ The sharpness solution is inspired by Foret et al., Sharpness-aware minimization for efficiently improving generalization $\hat{}$

Why Unstable Test-Time Adaptation?

Our method

Experimental Results

Results under Online Imbalanced Label Distribution Shifts

- SAR achieves the best performance over ResNet50-GN and VitBase-LN
 - Compare to Tent, SAR leads to 15.2% gains on R-50-GN and 10.7% gain on Vit-B-LN

	Noise Blur			Weather				Digital								
Model+Method	Gauss.	Shot	Impul.	Defoc.	Glass	Motion	Zoom	Snow	Frost	Fog	Brit.	Contr.	Elastic	Pixel	JPEG	Avg.
ResNet50 (BN)	2.2	2.9	1.8	17.8	9.8	14.5	22.5	16.8	23.4	24.6	59.0	5.5	17.1	20.7	31.6	18.0
• MEMO	7.4	8.6	8.9	19.8	13.2	20.8	27.5	25.6	28.6	32.3	60.8	11.0	23.8	33.2	37.7	24.0
• DDA	32.2	33.1	32.0	14.6	16.4	16.6	24.4	20.0	25.5	17.2	52.2	3.2	35.7	41.8	45.4	27.2
• Tent	1.2	1.4	1.4	1.0	0.9	1.2	2.6	1.7	1.8	3.6	5.0	0.5	2.6	3.2	3.1	2.1
• EATA	0.3	0.3	0.3	0.2	0.2	0.5	0.9	0.8	0.9	1.8	3.5	0.2	0.8	1.2	0.9	0.9
ResNet50 (GN)	17.9	19.9	17.9	19.7	11.3	21.3	24.9	40.4	47.4	33.6	69.2	36.3	18.7	28.4	52.2	30.6
• MEMO	18.4	20.6	18.4	17.1	12.7	21.8	26.9	40.7	46.9	34.8	69.6	36.4	19.2	32.2	53.4	31.3
• DDA	42.5	43.4	42.3	16.5	19.4	21.9	26.1	35.8	40.2	13.7	61.3	25.2	37.3	46.9	54.3	35.1
• Tent	2.6	3.3	2.7	13.9	7.9	19.5	17.0	16.5	21.9	1.8	70.5	42.2	6.6	49.4	53.7	22.0
• EATA	27.0	28.3	28.1	14.9	17.1	24.4	25.3	32.2	32.0	39.8	66.7	33.6	24.5	41.9	38.4	31.6
• SAR (ours)	$\textbf{33.1}_{\pm 1.0}$	$36.5_{\pm0.4}$	$35.5_{\pm 1.1}$	$19.2_{\pm0.4}$	$\textbf{19.5}_{\pm 1.2}$	$\textbf{33.3}_{\pm 0.5}$	$27.7_{\pm 4.0}$	$23.9_{\pm 5.1}$	$45.3_{\pm0.4}$	$\textbf{50.1}_{\pm 1.0}$	$\textbf{71.9}_{\pm 0.1}$	$\textbf{46.7}_{\pm 0.2}$	$7.1_{\pm 1.8}$	$\textbf{52.1}_{\pm 0.5}$	$\textbf{56.3}_{\pm 0.1}$	$37.2_{\pm 0.6}$
VitBase (LN)	9.4	6.7	8.3	29.1	23.4	34.0	27.0	15.8	26.3	47.4	54.7	43.9	30.5	44.5	47.6	29.9
• MEMO	21.6	17.4	20.6	37.1	29.6	40.6	34.4	25.0	34.8	55.2	65.0	54.9	37.4	55.5	57.7	39.1
• DDA	41.3	41.3	40.6	24.6	27.4	30.7	26.9	18.2	27.7	34.8	50.0	32.3	42.2	52.5	52.7	36.2
• Tent	32.7	1.4	34.6	54.4	52.3	58.2	52.2	7.7	12.0	69.3	76.1	66.1	56.7	69.4	66.4	47.3
• EATA	35.9	34.6	36.7	45.3	47.2	49.3	47.7	56.5	55.4	62.2	72.2	21.7	56.2	64.7	63.7	49.9
• SAR (ours)	$\textbf{46.5}_{\pm 3.0}$	43.1 $_{\pm 7.4}$	$\textbf{48.9}_{\pm 0.4}$	55.3 $_{\pm 0.1}$	$\textbf{54.3}_{\pm 0.2}$	$\textbf{58.9}_{\pm 0.1}$	$\textbf{54.8}_{\pm 0.2}$	$53.6_{\pm 7.1}$	$46.2_{\pm 3.5}$	$\textbf{69.7}_{\pm 0.3}$	$\textbf{76.2}_{\pm 0.1}$	66.2 $_{\pm 0.3}$	60.9 $_{\pm 0.3}$	$\textbf{69.6}_{\pm 0.1}$	66.6 $_{\pm 0.1}$	58.0 _{±0.5}

Efficiency Comparison and Ablations

• While improving adaptation stability, SAR maintains high efficiency

Method	Need source data?	Online update?	#Forward	#Backward	Other computation	GPU time (50,000 images)
MEMO (Zhang et al., 2021)	× ×	×	50,000×65	50,000×64	AugMix (Hendrycks et al., 2020)	933 minutes
DDA (Gao et al., 2022)	✓	×	50,000×2	0	50,000 diffusion	2,435 minutes
TTT (Sun et al., 2020)		\checkmark	50,000×21	50,000×20	rotation augmentation	61 minutes
Tent (Wang et al., 2021)	× ×	\checkmark	50,000	50,000	n/a	110 seconds
EATA (Niu et al., 2022)	✓	\checkmark	50,000 + 26,196	26,196	regularizer	114 seconds
SAR (ours)	X	\checkmark	50,000 + 12,710×2	12,710×2	Eqn. (5)	115 seconds

- Visualization of entropy loss surface
 - SAR is flatter, and more insensitive to noisy gradients

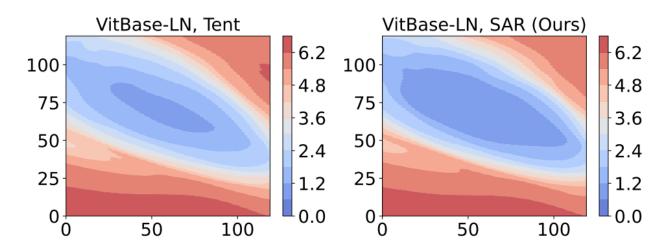


Figure. Loss (entropy) surface.

15

Why Unstable Test-Time Adaptation?

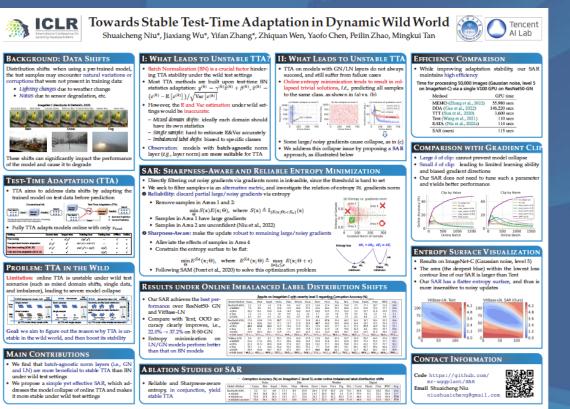
Our method

Experimental Results

(A

- We find that batch-agnostic norm layers (i.e., GN and LN) are more effective than BN for stable TTA under wild test settings
- We propose to use GN/LN models for stable TTA in the wild
- We further enhance the stability of online TTA for GN/LN models via a simple yet effective SAR method

Please use our github repository: https://github.com/mr-eggplant/SAR



Thank you!