Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

> Yong Guo¹, Yaofo Chen¹, Yin Zheng², Peilin Zhao³, Jian Chen¹⁴, Junzhou Huang⁵, Mingkui Tan¹⁶

¹School of Software Engineering, South China University of Technology
²Weixin Group, Tencent ³Tencent AI Lab , Tencent
⁴Guangdong Key Laboratory of Big Data Analysis and Processing
⁵University of Texas at Arlington ⁶Pazhou Laboratory

2. Proposed Method

3. Experimental Results

2. Proposed Method

3. Experimental Results

Deep neural networks have been producing state-of-the-art results in many challenging tasks, such as image classification, object detection, semantic segmentation and etc.

Image Classification

Object Detection

Semantic Segmentation

Figure: Applications of deep neural networks.

Neural architecture design is one of the key factors behind the success of deep neural networks.

Existing architectures can be divided into two categories:

- 1. Manually designed architectures
- 2. Automatically searched architectures by Neural Architecture Search (NAS)

Empirical studies show that the automatically searched architectures often outperform the manually designed ones.

Search Space Size Analysis

Space Explosion Issue

The search space in NAS is often **extremely large**.

Given *B* nodes and *K* candidate operations in a cell-based architecture, the size of the search space Ω can be computed by

$$|\Omega| = K^{2(B-3)} ((B-2)!)^2$$

- ENAS has a search space size of 5×10^{12} with B=8 and K=5
- DARTS has a search space size of 2×10^{11} with B=7 and K=8.

Search Space Size Analysis

- As the number of nodes/operations increases, the size of the search space will increase.
- Increasing nodes make the size of search space grow faster than increasing operations.

Figure: Comparisons of the search spaces size of different number of operations/nodes.

Motivation

To alleviate the space explosion issue, we seek to enlarge the search space gradually to improve the search performance by curriculum learning.

adaptively evolved subspace $\hfill \bigtriangleup$ initial sampled architecture

Figure: Comparisons of the search process between standard NAS methods and our proposed curriculum NAS method..

- 2. Proposed Method
- **3. Experimental Results**
- 4. Conclusion

Preliminary

Reinforcement Learning (RL) based NAS methods seek to learn a controller to produce candidate architectures.

$$\max_{\theta} \mathbb{E}_{\alpha \sim \pi(\alpha; \theta, \Omega)} \mathcal{R} \left(\alpha, w^*(\alpha) \right)$$

s.t. $w^*(\alpha) = \arg \min_{w} \mathcal{L} \left(\alpha, w \right)$

- \bullet is the parameter of the controller.
- \square Ω is the search space.

 \square $R(\alpha, w^*(\alpha))$ is some metric to measure the performance of architecture α .

 $\square \mathcal{L}$ is the loss function on training data.

Curriculum Neural Architecture Search

We propose a novel Curriculum Neural Architecture Search (CNAS) to enlarge the search space by gradually **increasing the number of candidate operations** from 1 to K.

Figure: An overview of the search space used by CNAS.

NAS with Curriculum Search

- The training process can be divided into K stages corresponding to K candidate operations.
- The training objective in *i-th* stage can be written as

$$\max_{\theta} \mathbb{E}_{\alpha \sim \pi(\cdot;\theta,\Omega_i)} \left[\mathcal{R} \left(\alpha, w^*(\alpha) \right) \right] + \lambda H \left(\pi \left(\cdot; \theta, \Omega_i \right) \right)$$

s.t. $w^*(\alpha) = \arg \min_{w} \mathcal{L} \left(\alpha, w \right),$

- \square Ω_i is the search space of the *i*-th stage.
- \square $\pi(\cdot; \theta, \Omega_i)$ denotes the learned policy w.r.t. Ω_i .
- \blacksquare $H(\cdot)$ evaluates the entropy of the policy.
- λ controls the strength of the entropy regularization term.

Operation Warmup

Operation Unfairness

The architectures with the new operation have very poor performance.

We propose an **operation warmup** method.

- We fix the controller model and only train the parameters of the super network.
- We uniformly sample candidate architectures to train each operation with equal probability.

The architectures with the newly added operation achieve **comparable performance**

with the architectures without this operation.

Training Method

Algorithm 1 Training method for CNAS.

- **Require:** The operation sequence O, learning rate η , the number of the iterations for operation warmup M, the uniform distribution of architectures $p(\cdot)$, the controller's policy $\pi(\cdot)$, super network parameters w, controller parameters θ .
- 1: Initialize w and θ , $\Omega_0 = \emptyset$.
- 2: for i=1 to |O| do
- 3: Enlarge Ω_i by adding O_i to the set of candidate operations;
- 4: // Operation warmup
- 5: for j=1 to M do
- 6: Sample $\alpha \sim p(\alpha; \Omega_i);$

7:
$$w \leftarrow w - \eta \nabla_w \mathcal{L}(\alpha, w)$$

- 8: end for
- 9: while not convergent do
- 10: *// Update* θ *by maximizing the reward*
- 11: **for** each iteration on validation data **do**

12: Sample $\alpha \sim \pi(\alpha; \theta, \Omega_i);$

- 13: Update the controller by ascending its gradient:
- 14: $\mathcal{R}(\alpha, w) \nabla_{\theta} \log \pi(\alpha; \theta, \Omega_i) + \lambda H(\pi(\cdot; \theta, \Omega_i));$
- 15: **end for**
- 16: *// Update w by minimizing the training loss*
- 17: **for** each iteration on training data **do**
- 18: Sample $\alpha \sim \pi(\alpha; \theta, \Omega_i);$

19:
$$w \leftarrow w - \eta \nabla_w \mathcal{L}(\alpha, w)$$

- 20: end for
- 21: end while
- 22: **end for**

2. Proposed Method

3. Experimental Results

Demonstration of CNAS

- **Fixed-NAS**: For each stage, we keep the search space fixed and train a controller from scratch.
- **CNAS**: We train the controller in a growing search space by gradually adding new operations.
- **CNAS-Node**: We train the controller in a growing search space by gradually adding new nodes.

Figure: Performance comparisons of the architectures obtained by different methods during the search process.

Evaluation on CIFAR-10

-				
Architecture	Test Accuracy (%)	Params (M)	Search Costs (GPU days)	
DenseNet-BC (Huang et al., 2017)	96.54	25.6	-	
PyramidNet-BC (Han et al., 2017)	96.69	26.0	_	
Random search baseline	96.71 ± 0.15	3.2	_	
NASNet-A + cutout (Zoph et al., 2018)	97.35	3.3	1800	
NASNet-B (Zoph et al., 2018)	96.27	2.6	1800	
NASNet-C (Zoph et al., 2018)	96.41	3.1	1800	
AmoebaNet-A + cutout (Real et al., 2019)	96.66 ± 0.06	3.2	3150	
AmoebaNet-B + cutout (Real et al., 2019)	96.63 ± 0.04	2.8	3150	
DSO-NAS (Zhang et al., 2018b)	97.05	3.0	1	
Hierarchical Evo (Liu et al., 2018b)	96.25 ± 0.12	15.7	300	
SNAS (Xie et al., 2019)	97.02	2.9	1.5	
ENAS + cutout (Pham et al., 2018)	97.11	4.6	0.5	
NAONet (Luo et al., 2018)	97.02	28.6	200	
NAONet-WS (Luo et al., 2018)	96.47	2.5	0.3	
GHN (Zhang et al., 2018a)	97.16 ± 0.07	5.7	0.8	
PNAS + cutout (Liu et al., 2018a)	97.17 ± 0.07	3.2	225	
DARTS + cutout (Liu et al., 2019)	97.24 ± 0.09	3.4	4	
CARS + cutout (Yang et al., 2019)	97.38	3.6	0.4	
CNAS + cutout	$\textbf{97.40} \pm \textbf{0.06}$	3.7	0.3	

CNAS yields significantly better performance than the baseline architectures on CIFAR-10.

Evaluation on CIFAR-10

CNAS	finds	better	architectures	than	existing	methods	on	ImageNet.
					\mathcal{O}			\mathcal{O}

Architecture	Test Accuracy (%)		#Parame (M)	#MAdds (M)	Search Cost
Architecture	Top-1	Top-5		#MAdds (M)	(GPU days)
ResNet-18 (He et al., 2016)	69.8	89.1	11.7	1814	_
Inception-v1 (Szegedy et al., 2015)	69.8	89.9	6.6	1448	_
MobileNet (Howard et al., 2017)	70.6	89.5	4.2	569	_
NASNet-A (Zoph et al., 2018)	74.0	91.6	5.3	564	1800
NASNet-B (Zoph et al., 2018)	72.8	91.3	5.3	488	1800
NASNet-C (Zoph et al., 2018)	72.5	91.0	4.9	558	1800
AmoebaNet-A (Real et al., 2019)	74.5	92.0	5.1	555	3150
AmoebaNet-B (Real et al., 2019)	74.0	92.4	5.3	555	3150
GHN (Zhang et al., 2018a)	73.0	91.3	6.1	569	0.8
SNAS (Xie et al., 2019)	72.7	90.8	4.3	522	1.5
DARTS (Liu et al., 2019)	73.1	91.0	4.9	595	4
NAT-DARTS (Guo et al., 2019)	73.7	91.4	4.0	441	-
PNAS (Liu et al., 2018a)	73.5	91.4	5.1	588	255
MnasNet-92 (Tan et al., 2019)	74.8	92.0	4.4	-	-
ProxylessNAS (Cai et al., 2019)	75.1	92.5	7.1	-	8.3
CARS (Yang et al., 2019)	75.2	92.5	5.1	591	0.4
CNAS	75.4	92.6	5.3	576	0.3

2. Proposed Method

3. Experimental Results

- We propose a novel Curriculum Neural Architecture Search (CNAS) method to alleviate the training difficulties of the NAS problem incurred by the extremely large search space.
- We propose a curriculum search method that gradually incorporates the knowledge learned from a small search space.
- Extensive experiments show the superiority of CNAS over the hand-crafted and NAS based architectures.

Thanks! Q&A

