
Contrastive Neural Architecture Search with

Neural Architecture Comparators

May 5, 2021

Yaofo Chen*, Yong Guo*, Qi Chen, Minli Li, Wei Zeng,
Yaowei Wang†, Mingkui Tan†

1

2

Contents

Background1

Contrastive Neural Architecture Search2

Neural Architecture Comparator3

Experiments4

Conclusion5

3

Background

Deep neural networks (DNNs) have achieved state-of-the-art

performance in many challenge tasks.

object detection semantic segmentation pose estimation

4

Neural Architecture Search

One of the key factors behind the success lies in the innovation of

effective neural architectures. However, it is non-trivial to design

effective architectures manually in practice. The reasons has two folds:

➢ It relies heavily on human expertise.

➢ It requires great human efforts to repeat “trial-and-error”.

Solution

In this context, Neural Architecture Search (NAS) was developed

to automate the architecture designing process.

5

Limitations of Existing NAS Methods

Using the absolute performance may suffer from two limitations:

➢ It is non-trivial to obtain stable and accurate absolute

performance for all the candidate architectures.

➢ It is time-consuming to obtain the absolute performance from

the supernet.

Existing NAS methods maximize the expectation of the absolute

performance of the sampled architectures.

6

Motivation

Suppose that is the optimal architecture in a search space, we would

have . To ensure the optimality, we only need

to compute

7

Contrastive Neural Architecture Search (CTNAS)

Unlike the traditional NAS methods, our CTNAS adopts the

comparison probability of two architectures as the reward signal.

8

Training Objective of CTNAS

Our CTNAS maximizes the expectation of the comparison

probability of the sampled architectures and the baseline one:

To provide the comparison probability, we learn a comparison

mapping, called Neural Architecture Comparator (NAC), to

compare any two architectures:

9

Baseline Updating via Curriculum Learning

Challenge

The above optimization problem can only enable the model to find

architectures that are better than the baseline architecture.

To address this issue, we propose a curriculum updating scheme to

gradually improve/update the baseline during the search process.

Task 1 Task 2 Task 3 …

The task become harder.

10

Overview of Neural Architecture Comparator

The proposed NAC takes two architectures as inputs and outputs

the comparison probability of the one being better than the other.

11

Architecture Representation Method

We represent an architecture as a directed acyclic graph (DAG),

which can be further represented by a pair (A, X).

➢ A denotes the adjacency matrix of the graph.

➢ X denotes learnable embeddings of nodes/operations.

12

Architecture Comparison by GCN

Based on the graph data pair (A, X), we use a two-layer GCN to

extract the architecture features Z.

To calculate the comparison probability, we concatenate the features

of two input architectures and send them to a fully-connected layer.

Then, the sigmoid function takes the output of the FC layer as input

and outputs the comparison probability.

13

Training Objective of NAC

To train the proposed NAC, we define the label for any architecture

pair as follows:

Thus, the training of NAC can be considered a binary classification

problem. We train NAC by optimizing the binary cross-entropy loss:

14

Data Exploration for Training NAC

Challenge

Learning a good NAC requires a set of labeled architecture pair data.

However, we can only obtain limited labeled data in practice.

To address this issue, we propose a data exploration method that takes

the class with maximum probability predicted by NAC as its label

for unlabeled data pairs.

15

Results on NAS-Bench-101

Our CTNAS outperforms the consider NAS methods in terms of

ranking correlation (Kendall’s Tau) and searched performance.

16

Results on ImageNet

Our CTNAS outperforms both manually-designed architectures

and state-of-the-art NAS models in different search spaces.

17

Conclusion

Conclusion

◼ We propose a Contrastive Neural Architecture Search (CTNAS) method

that takes the comparison results between architectures as the reward.

◼ To guarantee that CTNAS constantly finds better architectures, we propose a

curriculum updating scheme to gradually update/improve the baseline

architecture.

◼ Extensive experiments on three search spaces demonstrate that the searched

architectures of our CTNAS outperform the architectures designed by

state-of-the-art methods.

