Contrastive Neural Architecture Search with Neural Architecture Comparators

Yaofo Chen^{*}, Yong Guo^{*}, Qi Chen, Minli Li, Wei Zeng, Yaowei Wang⁺, Mingkui Tan⁺

May 5, 2021

1 Background

² Contrastive Neural Architecture Search

³ Neural Architecture Comparator

4 Experiments

Deep neural networks (DNNs) have achieved state-of-the-art performance in many challenge tasks.

object detection

semantic segmentation

pose estimation

Neural Architecture Search

One of the key factors behind the success lies in the **innovation of effective neural architectures**. However, it is **non-trivial** to design effective architectures manually **in practice**. The reasons has two folds:

> It relies heavily on human expertise.

> It requires great human efforts to repeat "trial-and-error".

Solution

In this context, Neural Architecture Search (NAS) was developed to **automate the architecture designing process**.

Limitations of Existing NAS Methods

Existing NAS methods maximize the expectation of **the absolute performance of the sampled architectures**.

$$\max_{\theta} \mathbb{E}_{\alpha \sim \pi(\alpha;\theta)} \mathcal{R}\left(\alpha, w_{\alpha}\right)$$

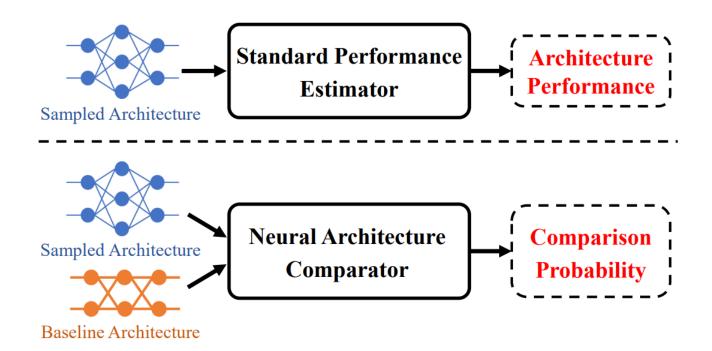
Using the absolute performance may suffer from two limitations:

- It is non-trivial to obtain stable and accurate absolute performance for all the candidate architectures.
- It is time-consuming to obtain the absolute performance from the supernet.

Motivation

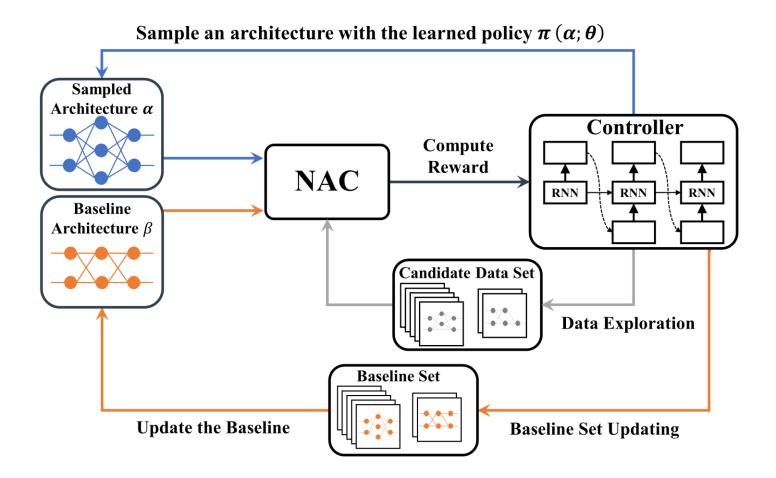
Suppose that α^* is the optimal architecture in a search space, we would have $\mathcal{R}(\alpha^*, w_{\alpha^*}) \ge \mathcal{R}(\alpha, w_{\alpha})$. To ensure the optimality, we only need to compute

$$\Pr[\mathcal{R}(\alpha^*, w_{\alpha^*}) \ge \mathcal{R}(\alpha, w_{\alpha})]$$



Contrastive Neural Architecture Search (CTNAS)

Unlike the traditional NAS methods, our CTNAS adopts the **comparison probability** of two architectures as the **reward signal**.



Training Objective of CTNAS

Our CTNAS maximizes the expectation of the **comparison probability** of the sampled architectures and the baseline one:

$$\max_{\theta} \mathbb{E}_{\alpha \sim \pi(\alpha; \theta)} \Pr[\mathcal{R}(\alpha, w_{\alpha}) \geq \mathcal{R}(\beta, w_{\beta})]$$

To provide the comparison probability, we learn a comparison mapping, called **Neural Architecture Comparator (NAC)**, to compare any two architectures:

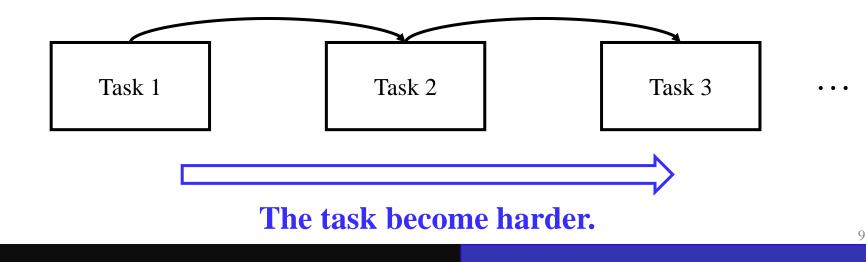
$$p = \Pr[\mathcal{R}(\alpha, w_{\alpha}) \ge \mathcal{R}(\alpha', w_{\alpha'})] = \operatorname{NAC}(\alpha, \alpha'; \varpi)$$

Baseline Updating via Curriculum Learning

Challenge

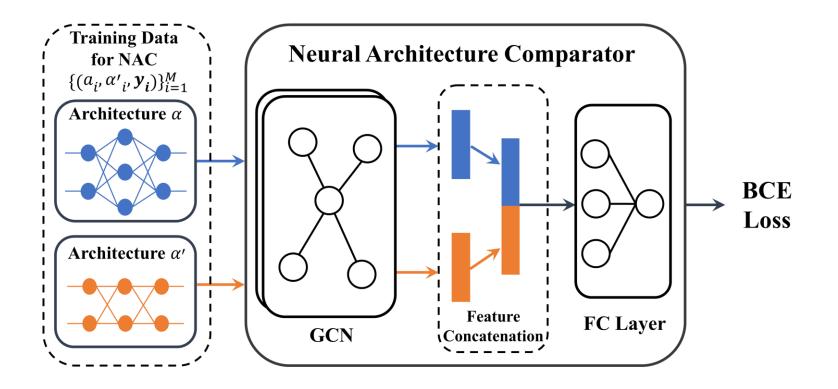
The above optimization problem can only enable the model to **find architectures that are better than the baseline architecture**.

To address this issue, we propose a curriculum updating scheme to gradually improve/update the baseline during the search process.



Overview of Neural Architecture Comparator

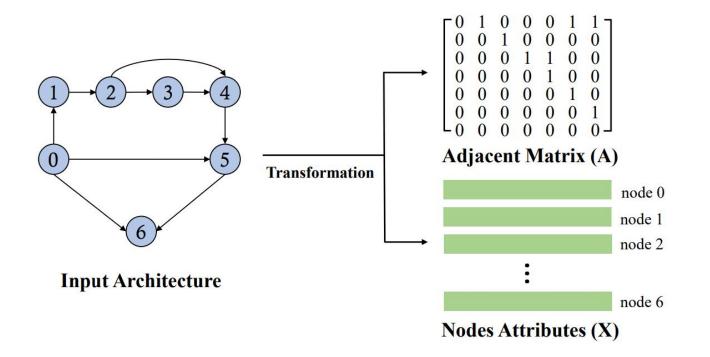
The proposed NAC takes **two architectures as inputs** and **outputs the comparison probability** of the one being better than the other.



Architecture Representation Method

We represent an architecture as a **directed acyclic graph (DAG)**, which can be further represented by **a pair (A, X)**.

- > A denotes the adjacency matrix of the graph.
- **X** denotes learnable embeddings of nodes/operations.



Architecture Comparison by GCN

Based on the graph data pair (A, X), we use a two-layer GCN to extract the architecture features Z.

$$\mathbf{Z}_{\alpha} = f(\mathbf{X}_{\alpha}, \mathbf{A}_{\alpha}) = \mathbf{A}_{\alpha}\phi\left(\mathbf{A}_{\alpha}\mathbf{X}_{\alpha}\mathbf{W}^{(0)}\right)\mathbf{W}^{(1)}$$

To calculate the comparison probability, we **concatenate the features** of two input architectures and send them to a fully-connected layer.

$$p = \operatorname{NAC}(\alpha, \alpha'; \varpi) = \sigma\left([\mathbf{Z}_{\alpha}; \mathbf{Z}_{\alpha'}] \mathbf{W}^{\mathbf{FC}} \right)$$

Then, the sigmoid function takes the output of the FC layer as input and outputs the **comparison probability**.

Training Objective of NAC

To train the proposed NAC, we define the label for any architecture pair as follows:

$$y = \mathbb{1}\{\mathcal{R}(\alpha, w_{\alpha}) - \mathcal{R}(\alpha', w_{\alpha'}) \ge 0\}$$

Thus, the training of NAC can be considered a **binary classification problem**. We train NAC by optimizing the binary cross-entropy loss:

$$\mathcal{L} = y \log(p) + (1 - y) \log(1 - p)$$

Data Exploration for Training NAC

Challenge

Learning a good NAC requires a set of labeled architecture pair data. However, we can only obtain **limited labeled data** in practice.

To address this issue, we propose a data exploration method that takes the class with **maximum probability predicted by NAC** as its label for unlabeled data pairs.

$$y' = \mathbb{1}\{ NAC(\alpha, \alpha'; \varpi) \ge 0.5 \}$$

Results on NAS-Bench-101

Our CTNAS **outperforms** the consider NAS methods in terms of **ranking correlation** (Kendall's Tau) and **searched performance**.

Method	KTau	Average Accuracy (%)	Best Accuracy (%)	Best Rank (%)	#Queries
Random	_	89.31 ± 3.92	93.46	1.29	423
DARTS [29]	_	92.21 ± 0.61	93.02	13.47	_
ENAS [37]	_	91.83 ± 0.42	92.54	22.88	_
FBNet [48]	_	92.29 ± 1.25	93.98	0.05	_
SPOS [17]	0.195	89.85 ± 3.80	93.84	0.07	_
FairNAS [8]	-0.232	91.10 ± 1.84	93.55	0.77	_
ReNAS [53]	0.634	93.90 ± 0.21	94.11	0.04	423
RegressionNAS	0.430	89.51 ± 4.94	93.65	0.40	423
CTNAS (Ours)	0.751	$\textbf{93.92} \pm \textbf{0.18}$	94.22	0.01	423

Results on ImageNet

Our CTNAS **outperforms** both **manually-designed architectures** and **state-of-the-art NAS models** in different search spaces.

Search Space	Architecture	Test Accuracy (%) Top-1 Top-5		#MAdds (M)	#Queries (K)	Search Time (GPU days)	Total Time (GPU days)
	MobileNetV2 $(1.4 \times)$ [40]	74.7	_	585	_	_	_
	ShuffleNetV2 $(2\times)$ [34]	73.7	-	524	_	_	-
NASNet	NASNet-A [59]	74.0	91.6	564	20	_	1800
	AmoebaNet-A [39]	74.5	92.0	555	20	_	3150
DARTS	DARTS [29]	73.1	91.0	595	19.5	4	4
	P-DARTS [7]	75.6	92.6	577	11.7	0.3	0.3
	PC-DARTS [50]	75.8	92.7	597	3.4	3.8	3.8
	CNAS [14]	75.4	92.6	576	100	0.3	0.3
MobileNetV3-like	MobileNetV3-Large [21]	75.2	_	219	_	_	_
	FBNet-C [48]	74.9	_	375	11.5	1.8	9
	MnasNet-A3 [44]	76.7	93.3	403	8	_	_
	ProxylessNAS [4]	75.1	92.3	465	_	_	8.3
	OFA [3]	76.0	_	230	16	1.7	51.7
	FBNetV2 [45] [†]	76.3	92.9	321	11.5	5	25
	AtomNAS [35]	75.9	92.0	367	78	_	_
	Random Search	76.0	92.6	314	1	_	50
	Best Sampled Architectures	76.7	93.1	382	1	_	50
	CTNAS (Ours)	77.3	93.4	482	1	0.1	50.1

Conclusion

- We propose a Contrastive Neural Architecture Search (CTNAS) method that takes the comparison results between architectures as the reward.
- To guarantee that CTNAS constantly finds better architectures, we propose a curriculum updating scheme to gradually update/improve the baseline architecture.
 - Extensive experiments on three search spaces demonstrate that the searched architectures of our CTNAS outperform the architectures designed by state-of-the-art methods.