

Sensitivity-Aware Post-Training Quantization for Deep Neural Networks

Zekang Zheng¹, Haokun Li¹, Yaofo Chen^{(\bowtie)1}, Mingkui Tan^{1,2,3}, Qing Du¹

South China University of Technology¹ Pazhou Laboratory² Key Laboratory of Big Data and Intelligent Robot, Ministry of Education³

BACKGROUND

- **Problem**: The widespread application of deep learning models has led to a continual increase in their **scale** and **computational complexity**, posing significant challenges for deploying these models on **resource-constrained devices**.
- Limitations of Existing Methods: Prior quantization approaches, being inherently an approximation, inevitably leads to performance degradation.

How to achieve efficient and rapid quantization while preserving model accuracy has become a prominent research focus of model compression.

RELATED WORK

Model quantization methods can be broadly divided into two categories:

- Quantization-Aware Training (QAT): Quantization operations are simulated during the training or fine-tuning phase to align model parameters with the quantized representation.
 - Advantages: Achieves high accuracy; effectively mitigates quantization-induced errors.
 - Disadvantages: Requires retraining with full datasets; incurs high computational cost and long training time, unsuitable for rapid deployment.
- **Post-Training Quantization (PTQ):** Applies quantization directly to a pre-trained full-precision model without retraining, usually with the aid of a small calibration dataset.
 - Advantages: Simple, flexible, and fast; enables efficient deployment.
 - *Disadvantages:* May cause **non-negligible accuracy degradation**, especially under low-bit settings; sensitive to calibration data quality.

Mainstream PTQ Methods. Representative Post-Training Quantization (PTQ) methods include **AdaRound** and **OBS/OBQ**, effectively preserve accuracy under high compression ratios, they suffer from **high computational complexity**, **sequential parameter updates**, **and long quantization times**, making them unsuitable for real-time or resource-constrained deployment scenarios.

CONTRIBUTIONS

- Quantitation Framework. We designed a sensitivity-guided model parameter quantization strategy, which effectively mitigates accuracy loss during the quantization process.
- Parallel Quantitation Algorithm. We proposed a parallel parameter quantization algorithm along the row dimension. By establishing a shared inverse Hessian update mechanism, parameter quantization operations are executed in parallel along the row dimension, significantly reducing computational overhead and substantially decreasing quantization time.
- **Great Efficiency**. Extensive experimental results show that our method significantly **reduces quantization time and memory footprint** across various models, achieving nearly **lossless accuracy** compared to current SoTA methods.

SECOND-ORDER QUANTIZATION BACKGROUND (OBS/OBQ)

We formulate **post-training quantization as a second-order optimization problem**. By applying a Taylor expansion of the loss function around a local minimum, the error increase from weight perturbation is approximated as:

$$\Delta E \approx \frac{1}{2} \Delta w^{\mathsf{T}} H \Delta w,$$

where H is the Hessian matrix. The **Optimal Brain Surgeon (OBS)** method minimizes this error under the constraint that a target weight is fixed (e.g., pruned or quantized), yielding the optimal compensation

$$\Delta w = -\frac{w_q}{[H^{-1}]_{qq}} H^{-1} e_q, \quad L_q = \frac{w_q^2}{2[H^{-1}]_{qq}},$$

where L_q measures parameter sensitivity. Extending this to quantization gives **OBQ**, which uses H^{-1} to propagate quantization error and update remaining weights optimally.

Advantages: Accurately models quantization error; theoretically minimizes accuracy loss. Limitations: Requires computing and updating large Hessian matrices; updates are sequential and computationally expensive, limiting its practicality for large-scale or real-time quantization.

SENSITIVITY-GUIDED EFFICIENT QUANTIZATION (FASTOBQ)

We propose **FastOBQ**, an efficient post-training quantization method that improves both accuracy and speed over OBQ through two core designs.

- (1) Sensitivity-Guided Quantization Order. Traditional PTQ methods quantize weights in ascending sensitivity order—starting from low-sensitivity parameters. However, this causes error accumulation: when high-sensitivity weights are quantized later, most other parameters have already been fixed, leaving little room for compensation. Our FastOBQ reverses this process by quantizing in descending sensitivity order. High-sensitivity weights are processed first, allowing the remaining low-sensitivity weights to compensate for larger quantization errors.
- (2) Row-Parallel Column-Synchronized Quantization. OBQ performs independent row-wise updates and repeatedly recomputes the inverse Hessian matrix, resulting in high computational and memory cost. Our FastOBQ observes that parameter sensitivity tends to cluster along columns, enabling column-wise synchronization. It aggregates sensitivity per column

$$S_j = \sum_i L_q(w_{ij}),$$

then quantizes columns in descending S_j order while maintaining a single shared inverse Hessian H^{-1} . All weights in one column are quantized simultaneously with a single global Hessian update.

COMPLEXITY COMPARISONS AND ANALYSIS

Computational Complexity of OBQ: The standard OBQ performs independent Hessian updates for each row, leading to a total computational cost of $\mathcal{O}(d_{\text{row}} d_{\text{col}}^3)$.

Computational Complexity of Our FastOBQ: FastOBQ quantizes all parameters column by column while sharing a inverse Hessian matrix, thereby reducing redundant updates. Its total complexity becomes $\mathcal{O}(d_{\text{col}}^3) + \mathcal{O}(d_{\text{row}} d_{\text{col}}^2)$, representing an order-of-magnitude reduction compared to OBQ.

COMPARISONS WITH SOTA METHODS

• Comparisons of different methods under 4-bit weight quantization. "Time" denotes quantization times. "Mem." denotes peak memory usage.

Dit vviatn	Method	Layer-wise Quant.	Accuracy	Time (s)	Mem. (Mb)
FP32	_	_	69.76	_	_
W4A32	BRECQ		70.94	1789	5391
	Bias Correction		53.76		<u> </u>
	AdaRound		68.52	1225	3834
	AdaQuant		67.01	341	4789
	Bit-split		69.11	3191	10803
	OBQ		69.33	7784	6502
	FastOBQ (Ours)		69.37	58	3069
FP32	_	_	76.13	_	_
W4A32	BRECQ		76.463	5558	10295
	Bias Correction		63.52		<u> </u>
	AdaRound		75.26	3766	4517
	AdaQuant		75.22	1127	7760
	Bit-split		75.58	5032	10856
	OBQ		75.71	9287	6859
	FastOBQ (Ours)		75.77	80	3683
	FP32 FP32 FP32	FP32 Bias Correction AdaRound W4A32 AdaQuant Bit-split OBQ FastOBQ (Ours) FP32 BRECQ Bias Correction AdaRound W4A32 AdaQuant Bit-split OBQ Bias Correction AdaRound W4A32 AdaQuant Bit-split OBQ	FP32 BRECQ Bias Correction	FP32	FP32 69.76 - BRECQ Bias Correction AdaRound AdaQuant Bit-split OBQ FastOBQ (Ours) FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 AdaRound AdaRound AdaRound FratOBQ (Ours) FF732 AdaRound AdaRound FF732 FP32 FP32 FP32 FP32 FP34 FP35 Bias Correction AdaRound AdaRound AdaRound FF75.26 AdaRound FF75.26 AdaRound FF75.26 AdaQuant FF75.26 AdaQuant FF75.26 FF75.27 FF75.28 FF75.28 FF75.29 FF75.29 FF75.29 FF75.29 FF75.29 FF75.29 FF75.20 FFF75.20 FF75.20 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Comparisons of different methods under YOLOv5 model quantization. "Time" denotes quantization times. "Mem." denotes peak memory usage.

Model	Bit Width	Method	Layer-wise	mAP@0.5	mAP@0.5:0.95	Time (s)	Mem. (MB)
	FP32	_	_	37.46	56.73	_	_
YOLOv5s	W6A32	Bias Correction		26.52	45.69		
		OBQ		37.01	56.46	611	1966
		FastOBQ (Ours)		36.60	56.25	17	1966
	FP32	_	_	37.46	56.73	-	_
	W8A32	Bias Correction		26.95	45.89		<u>-</u>
		OBQ		37.41	56.74	766	1966
		FastOBQ (Ours)		37.36	56.70	22	1966
	FP32	_	_	45.16	63.88	_	_
YOLOv5m	W6A32	Bias Correction		35.33	53.96		_
		OBQ		44.83	63.81	3289	4350
		FastOBQ (Ours)		44.37	63.44	36	3007
	FP32	_	_	45.16	63.88	_	_
	W8A32	Bias Correction		35.56	53.99		_
		OBQ		45.09	63.87	3282	4350
		FastOBQ (ours)		45.08	63.88	39	3007

CONTACT INFORMATION

- Email: chenyaofo@scut.edu.cn
- Personal Page: https://chenyaofo.com

