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BACKGROUND
• Problem: The widespread application of deep learning models has led to a continual increase

in their scale and computational complexity, posing significant challenges for deploying these
models on resource-constrained devices.

• Limitations of Existing Methods: Prior quantization approaches, being inherently an approxi-
mation, inevitably leads to performance degradation.

How to achieve efficient and rapid quantization while preserving model accuracy has become a
prominent research focus of model compression.

RELATED WORK
Model quantization methods can be broadly divided into two categories:

• Quantization-Aware Training (QAT): Quantization operations are simulated during the
training or fine-tuning phase to align model parameters with the quantized representation.

– Advantages: Achieves high accuracy; effectively mitigates quantization-induced errors.

– Disadvantages: Requires retraining with full datasets; incurs high computational cost
and long training time, unsuitable for rapid deployment.

• Post-Training Quantization (PTQ): Applies quantization directly to a pre-trained full-
precision model without retraining, usually with the aid of a small calibration dataset.

– Advantages: Simple, flexible, and fast; enables efficient deployment.

– Disadvantages: May cause non-negligible accuracy degradation, especially under low-bit
settings; sensitive to calibration data quality.

Mainstream PTQ Methods. Representative Post-Training Quantization (PTQ) methods include
AdaRound and OBS/OBQ, effectively preserve accuracy under high compression ratios, they suffer
from high computational complexity, sequential parameter updates, and long quantization times,
making them unsuitable for real-time or resource-constrained deployment scenarios.

CONTRIBUTIONS
• Quantitation Framework. We designed a sensitivity-guided model parameter quantization

strategy, which effectively mitigates accuracy loss during the quantization process.
• Parallel Quantitation Algorithm. We proposed a parallel parameter quantization algorithm

along the row dimension. By establishing a shared inverse Hessian update mechanism, parameter
quantization operations are executed in parallel along the row dimension, significantly reducing
computational overhead and substantially decreasing quantization time.

• Great Efficiency. Extensive experimental results show that our method significantly reduces
quantization time and memory footprint across various models, achieving nearly lossless
accuracy compared to current SoTA methods.

SECOND-ORDER QUANTIZATION BACKGROUND (OBS/OBQ)
We formulate post-training quantization as a second-order optimization problem. By applying
a Taylor expansion of the loss function around a local minimum, the error increase from weight
perturbation is approximated as:

∆E ≈ 1
2 ∆w⊤H∆w,

where H is the Hessian matrix. The Optimal Brain Surgeon (OBS) method minimizes this error
under the constraint that a target weight is fixed (e.g., pruned or quantized), yielding the optimal
compensation
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where Lq measures parameter sensitivity. Extending this to quantization gives OBQ, which uses
H−1 to propagate quantization error and update remaining weights optimally.
Advantages: Accurately models quantization error; theoretically minimizes accuracy loss. Limi-
tations: Requires computing and updating large Hessian matrices; updates are sequential and
computationally expensive, limiting its practicality for large-scale or real-time quantization.

SENSITIVITY-GUIDED EFFICIENT QUANTIZATION (FASTOBQ)
We propose FastOBQ, an efficient post-training quantization method that improves both accuracy
and speed over OBQ through two core designs.

(1) Sensitivity-Guided Quantization Order. Traditional PTQ methods quantize weights in as-
cending sensitivity order—starting from low-sensitivity parameters. However, this causes error
accumulation: when high-sensitivity weights are quantized later, most other parameters have
already been fixed, leaving little room for compensation. Our FastOBQ reverses this process by
quantizing in descending sensitivity order. High-sensitivity weights are processed first, allowing
the remaining low-sensitivity weights to compensate for larger quantization errors.

(2) Row-Parallel Column-Synchronized Quantization. OBQ performs independent row-wise
updates and repeatedly recomputes the inverse Hessian matrix, resulting in high computational
and memory cost. Our FastOBQ observes that parameter sensitivity tends to cluster along columns,
enabling column-wise synchronization. It aggregates sensitivity per column

Sj =
∑
i

Lq(wij),

then quantizes columns in descending Sj order while maintaining a single shared inverse Hessian
H−1. All weights in one column are quantized simultaneously with a single global Hessian update.

COMPLEXITY COMPARISONS AND ANALYSIS
Computational Complexity of OBQ: The standard OBQ performs independent Hessian updates
for each row, leading to a total computational cost of O(drow d3col).
Computational Complexity of Our FastOBQ: FastOBQ quantizes all parameters column by column
while sharing a inverse Hessian matrix, thereby reducing redundant updates. Its total complexity
becomes O(d3col) +O(drow d2col), representing an order-of-magnitude reduction compared to OBQ.

COMPARISONS WITH SOTA METHODS
• Comparisons of different methods under 4-bit weight quantization. “Time” denotes quantization

times. “Mem.” denotes peak memory usage.

Model Bit Width Method Layer-wise Quant. Accuracy Time (s) Mem. (MB)

ResNet-18

FP32 - - 69.76 - -

W4A32

BRECQ 70.94 1789 5391
Bias Correction ✓ 53.76 - -

AdaRound ✓ 68.52 1225 3834
AdaQuant ✓ 67.01 341 4789

Bit-split ✓ 69.11 3191 10803
OBQ ✓ 69.33 7784 6502

FastOBQ (Ours) ✓ 69.37 58 3069

ResNet-50

FP32 - - 76.13 - -

W4A32

BRECQ 76.463 5558 10295
Bias Correction ✓ 63.52 - -

AdaRound ✓ 75.26 3766 4517
AdaQuant ✓ 75.22 1127 7760

Bit-split ✓ 75.58 5032 10856
OBQ ✓ 75.71 9287 6859

FastOBQ (Ours) ✓ 75.77 80 3683

• Comparisons of different methods under YOLOv5 model quantization. “Time” denotes quanti-
zation times. “Mem.” denotes peak memory usage.
Model Bit Width Method Layer-wise mAP@0.5 mAP@0.5:0.95 Time (s) Mem. (MB)

YOLOv5s

FP32 - - 37.46 56.73 - -

W6A32
Bias Correction ✓ 26.52 45.69 - -

OBQ ✓ 37.01 56.46 611 1966
FastOBQ (Ours) ✓ 36.60 56.25 17 1966

FP32 - - 37.46 56.73 - -

W8A32
Bias Correction ✓ 26.95 45.89 - -

OBQ ✓ 37.41 56.74 766 1966
FastOBQ (Ours) ✓ 37.36 56.70 22 1966

YOLOv5m

FP32 - - 45.16 63.88 - -

W6A32
Bias Correction ✓ 35.33 53.96 - -

OBQ ✓ 44.83 63.81 3289 4350
FastOBQ (Ours) ✓ 44.37 63.44 36 3007

FP32 - - 45.16 63.88 - -

W8A32
Bias Correction ✓ 35.56 53.99 - -

OBQ ✓ 45.09 63.87 3282 4350
FastOBQ (ours) ✓ 45.08 63.88 39 3007
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