
Sensitivity-Aware Post-Training Quantization for Deep Neural Networks
Zekang Zheng1, Haokun Li1, Yaofo Chen(B)1, Mingkui Tan1,2,3, Qing Du1

South China University of Technology1 Pazhou Laboratory2 Key Laboratory of Big Data and Intelligent Robot, Ministry of Education3

BACKGROUND
• Problem: The widespread application of deep learning models has led to a continual increase

in their scale and computational complexity, posing significant challenges for deploying these
models on resource-constrained devices.

• Limitations of Existing Methods: Prior quantization approaches, being inherently an approxi-
mation, inevitably leads to performance degradation.

How to achieve efficient and rapid quantization while preserving model accuracy has become a
prominent research focus of model compression.

RELATED WORK
Model quantization methods can be broadly divided into two categories:

• Quantization-Aware Training (QAT): Quantization operations are simulated during the
training or fine-tuning phase to align model parameters with the quantized representation.

– Advantages: Achieves high accuracy; effectively mitigates quantization-induced errors.

– Disadvantages: Requires retraining with full datasets; incurs high computational cost
and long training time, unsuitable for rapid deployment.

• Post-Training Quantization (PTQ): Applies quantization directly to a pre-trained full-
precision model without retraining, usually with the aid of a small calibration dataset.

– Advantages: Simple, flexible, and fast; enables efficient deployment.

– Disadvantages: May cause non-negligible accuracy degradation, especially under low-bit
settings; sensitive to calibration data quality.

Mainstream PTQ Methods. Representative Post-Training Quantization (PTQ) methods include
AdaRound and OBS/OBQ, effectively preserve accuracy under high compression ratios, they suffer
from high computational complexity, sequential parameter updates, and long quantization times,
making them unsuitable for real-time or resource-constrained deployment scenarios.

CONTRIBUTIONS
• Quantitation Framework. We designed a sensitivity-guided model parameter quantization

strategy, which effectively mitigates accuracy loss during the quantization process.
• Parallel Quantitation Algorithm. We proposed a parallel parameter quantization algorithm

along the row dimension. By establishing a shared inverse Hessian update mechanism, parameter
quantization operations are executed in parallel along the row dimension, significantly reducing
computational overhead and substantially decreasing quantization time.

• Great Efficiency. Extensive experimental results show that our method significantly reduces
quantization time and memory footprint across various models, achieving nearly lossless
accuracy compared to current SoTA methods.

SECOND-ORDER QUANTIZATION BACKGROUND (OBS/OBQ)
We formulate post-training quantization as a second-order optimization problem. By applying
a Taylor expansion of the loss function around a local minimum, the error increase from weight
perturbation is approximated as:

∆E ≈ 1
2 ∆w⊤H∆w,

where H is the Hessian matrix. The Optimal Brain Surgeon (OBS) method minimizes this error
under the constraint that a target weight is fixed (e.g., pruned or quantized), yielding the optimal
compensation

∆w = − wq

[H−1]qq
H−1eq, Lq =

w2
q

2[H−1]qq
,

where Lq measures parameter sensitivity. Extending this to quantization gives OBQ, which uses
H−1 to propagate quantization error and update remaining weights optimally.
Advantages: Accurately models quantization error; theoretically minimizes accuracy loss. Limi-
tations: Requires computing and updating large Hessian matrices; updates are sequential and
computationally expensive, limiting its practicality for large-scale or real-time quantization.

SENSITIVITY-GUIDED EFFICIENT QUANTIZATION (FASTOBQ)
We propose FastOBQ, an efficient post-training quantization method that improves both accuracy
and speed over OBQ through two core designs.

(1) Sensitivity-Guided Quantization Order. Traditional PTQ methods quantize weights in as-
cending sensitivity order—starting from low-sensitivity parameters. However, this causes error
accumulation: when high-sensitivity weights are quantized later, most other parameters have
already been fixed, leaving little room for compensation. Our FastOBQ reverses this process by
quantizing in descending sensitivity order. High-sensitivity weights are processed first, allowing
the remaining low-sensitivity weights to compensate for larger quantization errors.

(2) Row-Parallel Column-Synchronized Quantization. OBQ performs independent row-wise
updates and repeatedly recomputes the inverse Hessian matrix, resulting in high computational
and memory cost. Our FastOBQ observes that parameter sensitivity tends to cluster along columns,
enabling column-wise synchronization. It aggregates sensitivity per column

Sj =
∑
i

Lq(wij),

then quantizes columns in descending Sj order while maintaining a single shared inverse Hessian
H−1. All weights in one column are quantized simultaneously with a single global Hessian update.

COMPLEXITY COMPARISONS AND ANALYSIS
Computational Complexity of OBQ: The standard OBQ performs independent Hessian updates
for each row, leading to a total computational cost of O(drow d3col).
Computational Complexity of Our FastOBQ: FastOBQ quantizes all parameters column by column
while sharing a inverse Hessian matrix, thereby reducing redundant updates. Its total complexity
becomes O(d3col) +O(drow d2col), representing an order-of-magnitude reduction compared to OBQ.

COMPARISONS WITH SOTA METHODS
• Comparisons of different methods under 4-bit weight quantization. “Time” denotes quantization

times. “Mem.” denotes peak memory usage.

Model Bit Width Method Layer-wise Quant. Accuracy Time (s) Mem. (MB)

ResNet-18

FP32 - - 69.76 - -

W4A32

BRECQ 70.94 1789 5391
Bias Correction ✓ 53.76 - -

AdaRound ✓ 68.52 1225 3834
AdaQuant ✓ 67.01 341 4789

Bit-split ✓ 69.11 3191 10803
OBQ ✓ 69.33 7784 6502

FastOBQ (Ours) ✓ 69.37 58 3069

ResNet-50

FP32 - - 76.13 - -

W4A32

BRECQ 76.463 5558 10295
Bias Correction ✓ 63.52 - -

AdaRound ✓ 75.26 3766 4517
AdaQuant ✓ 75.22 1127 7760

Bit-split ✓ 75.58 5032 10856
OBQ ✓ 75.71 9287 6859

FastOBQ (Ours) ✓ 75.77 80 3683

• Comparisons of different methods under YOLOv5 model quantization. “Time” denotes quanti-
zation times. “Mem.” denotes peak memory usage.
Model Bit Width Method Layer-wise mAP@0.5 mAP@0.5:0.95 Time (s) Mem. (MB)

YOLOv5s

FP32 - - 37.46 56.73 - -

W6A32
Bias Correction ✓ 26.52 45.69 - -

OBQ ✓ 37.01 56.46 611 1966
FastOBQ (Ours) ✓ 36.60 56.25 17 1966

FP32 - - 37.46 56.73 - -

W8A32
Bias Correction ✓ 26.95 45.89 - -

OBQ ✓ 37.41 56.74 766 1966
FastOBQ (Ours) ✓ 37.36 56.70 22 1966

YOLOv5m

FP32 - - 45.16 63.88 - -

W6A32
Bias Correction ✓ 35.33 53.96 - -

OBQ ✓ 44.83 63.81 3289 4350
FastOBQ (Ours) ✓ 44.37 63.44 36 3007

FP32 - - 45.16 63.88 - -

W8A32
Bias Correction ✓ 35.56 53.99 - -

OBQ ✓ 45.09 63.87 3282 4350
FastOBQ (ours) ✓ 45.08 63.88 39 3007

CONTACT INFORMATION

• Email: chenyaofo@scut.edu.cn

• Personal Page: https://chenyaofo.com


