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* Problem: The widespread application of deep learning models has led to a continual increase
in their scale and computational complexity, posing signitficant challenges for deploying these
models on resource-constrained devices.

 Limitations of Existing Methods: Prior quantization approaches, being inherently an approxi-
mation, inevitably leads to performance degradation.

How to achieve efficient and rapid quantization while preserving model accuracy has become a
prominent research focus of model compression.

RELATED WORK

Model quantization methods can be broadly divided into two categories:

* Quantization-Aware Training (QAT): Quantization operations are simulated during the
training or fine-tuning phase to align model parameters with the quantized representation.

— Advantages: Achieves high accuracy; effectively mitigates quantization-induced errors.

— Disadvantages: Requires retraining with full datasets; incurs high computational cost

and long training time, unsuitable for rapid deployment.

 Post-Training Quantization (PTQ): Applies quantization directly to a pre-trained full-
precision model without retraining, usually with the aid of a small calibration dataset.
— Advantages: Simple, flexible, and fast; enables efficient deployment.

— Disadvantages: May cause non-negligible accuracy degradation, especially under low-bit
settings; sensitive to calibration data quality.

Mainstream PTQ Methods. Representative Post-Training Quantization (PTQ) methods include

AdaRound and OBS/OBQ, etfectively preserve accuracy under high compression ratios, they suffer
from high computational complexity, sequential parameter updates, and long quantization times,
making them unsuitable for real-time or resource-constrained deployment scenarios.

CONTRIBUTIONS

* Quantitation Framework. We designed a sensitivity-guided model parameter quantization

strategy, which effectively mitigates accuracy loss during the quantization process.

* Parallel Quantitation Algorithm. We proposed a parallel parameter quantization algorithm
along the row dimension. By establishing a shared inverse Hessian update mechanism, parameter
quantization operations are executed in parallel along the row dimension, significantly reducing
computational overhead and substantially decreasing quantization time.

 Great Efficiency. Extensive experimental results show that our method significantly reduces
quantization time and memory footprint across various models, achieving nearly lossless
accuracy compared to current SOTA methods.

SECOND-ORDER QUANTIZATION BACKGROUND (OBS/OBQ)

We formulate post-training quantization as a second-order optimization problem. By applying
a Taylor expansion of the loss function around a local minimum, the error increase from weight

perturbation is approximated as:
AE ~  Aw' H Aw,

where H is the Hessian matrix. The Optimal Brain Surgeon (OBS) method minimizes this error
under the constraint that a target weight is fixed (e.¢., pruned or quantized), yielding the optimal
compensation
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where L, measures parameter sensitivity. Extending this to quantization gives OBQ, which uses
H~! to propagate quantization error and update remaining weights optimally.

Advantages: Accurately models quantization error; theoretically minimizes accuracy loss. Limi-

tations: Requires computing and updating large Hessian matrices; updates are sequential and
computationally expensive, limiting its practicality for large-scale or real-time quantization.

SENSITIVITY-GUIDED EFFICIENT QUANTIZATION (FASTOBQ)

We propose FastOBQ), an efficient post-training quantization method that improves both accuracy
and speed over OBQ through two core designs.

(1) Sensitivity-Guided Quantization Order. Traditional PTQ methods quantize weights in as-
cending sensitivity order—starting from low-sensitivity parameters. However, this causes error
accumulation: when high-sensitivity weights are quantized later, most other parameters have
already been fixed, leaving little room for compensation. Our FastOBQ reverses this process by
quantizing in descending sensitivity order. High-sensitivity weights are processed first, allowing
the remaining low-sensitivity weights to compensate for larger quantization errors.

(2) Row-Parallel Column-Synchronized Quantization. OBQ performs independent row-wise
updates and repeatedly recomputes the inverse Hessian matrix, resulting in high computational
and memory cost. Our FastOBQ observes that parameter sensitivity tends to cluster along columns,
enabling column-wise synchronization. It aggregates sensitivity per column
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then quantizes columns in descending .S; order while maintaining a single shared inverse Hessian
H~*. All weights in one column are quantized simultaneously with a single global Hessian update.

COMPLEXITY COMPARISONS AND ANALYSIS

Computational Complexity of OBQ: The standard OBQ performs independent Hessian updates
for each row, leading to a total computational cost of O(d,ow d2 ).

Computational Complexity of Our FastOBQ: FastOBQ quantizes all parameters column by column
while sharing a inverse Hessian matrix, thereby reducing redundant updates. Its total complexity

becomes O(d2 ;) + O(dyow d-), representing an order-of-magnitude reduction compared to OBQ.

e Comparisons of different methods under 4-bit weight quantization. “Time” denotes quantization
times. “Mem.” denotes peak memory usage.

Model Bit Width Method Layer-wise Quant. Accuracy Time(s) Mem. (MB)
FPP32 - - 69.76 - -
BRECQ 70.94 1789 5391
~ Bias Correction v 53.76 - -
ResNet-18 AdaRound v 68.52 1225 3834
W4A32 AdaQuant v 67.01 341 4789
Bit-split v 69.11 3191 10803
OBQ v 69.33 7784 6502
FastOBQ (Ours) v 69.37 58 3069
FP32 - - 76.13 - -
BRECQ 76.463 5558 10295
- Bias Correction v 63.52 - -
ResNet-50 AdaRound v 75.26 3766 4517
W4A32 AdaQuant ve 75.22 1127 7760
Bit-split v 75.58 5032 10856
OBQ v 75.71 9287 6859
FastOBQ (Ours) v 75.77 80 3683

zation times. “Mem.” denotes peak memory usage.

 Comparisons of different methods under YOLOvV5 model quantization. “Time” denotes quanti-

Model Bit Width Method Layer-wise mAP@0.5 mAP@0.5:095 Time(s) Mem. (MB)
FP32 - - 37.46 56.73 - -
Bias Correction v 26.52 45.69 - -
W6A32 OBQ v 37.01 56.46 611 1966
FastOBQ (Ours) v 36.60 56.25 17 1966
FP32 - - 37.46 56.73 - -
YOLOvSs - Bias Correction v 26.95 45.89 - -
WE8A32 OBQ v 37.41 56.74 766 1966
FastOBQ (Ours) v 37.36 56.70 22 1966
FP32 - - 45.16 63.88 - -
Bias Correction v 35.33 53.96 - -
W6A32 OBQ v 44.83 63.81 3289 4350
FastOBQ (Ours) v 44 .37 63.44 36 3007
FP32 - - 45.16 63.88 - -
YOLOvom - Bias Correction v 35.56 53.99 - -
WE8A32 OBQ v 45.09 63.87 3282 4350
FastOBQ (ours) v 45.08 63.88 39 3007
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