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BACKGROUND: DATA SHIFTS
Distribution shifts: when using a pre-trained model,
the test samples may encounter natural variations or
corruptions that were not present in training data:

• Lighting changes due to weather change
• Noises due to sensor degradation, etc.
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ImageNet-C (Hendrycks & Dietterich, 2019)

Snow Fog

These shifts can significantly impact the performance
of the model and cause it to degrade

TEST-TIME ADAPTATION (TTA)
• TTA aims to address data shifts by adapting the

trained model on test data before prediction
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The Figures are borrowed from Wu et al., Uncovering 
Adversarial Risks of Test-Time Adaptation.

• Fully TTA adapts models online with only xtest

Setting Source data Target data Training loss Testing loss Offline Online

Fine-tuning × x! , 𝑦! ℒ(x! , 𝑦!) -- √ ×

Unsupervised domain adaptation x", 𝑦" x! ℒ x!, 𝑦! + ℒ(x!, x") -- √ ×

Test-time training [ICML 20] x", 𝑦" x! ℒ x", 𝑦" + ℒ(x") ℒ(x!) × √
Fully test-time adaptation [ICLR 21] × x! × ℒ(x!) × √

PROBLEM: TTA IN THE WILD
Limitation: online TTA is unstable under wild test
scenarios (such as mixed domain shifts, single data,
and imbalance), leading to severe model collapse
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(c) TTA under online imbalanced label shift
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Goal: we aim to figure out the reason why TTA is un-
stable in the wild world, and then boost its stability

MAIN CONTRIBUTIONS
• We find that batch-agnostic norm layers (i.e., GN

and LN) are more beneficial to stable TTA than BN
under wild test settings

• We propose a simple yet effective SAR, which ad-
dresses the model collapse of online TTA and makes
it more stable under wild test settings

I: WHAT LEADS TO UNSTABLE TTA?
• Batch Normalization (BN) is a crucial factor hinder-

ing TTA stability under the wild test settings
• Most TTA methods are built upon test-time BN

statistics adaptation: y(k) = γ(k)x̂(k) + β(k), x̂(k) =(
x(k) − E
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• However, the E and Var estimation under wild set-

tings would be inaccurate:

– Mixed domain shifts: ideally each domain should
have its own statistics

– Single sample: hard to estimate E&Var accurately
– Imbalanced label shifts: biased to specific classes

• Observation: models with batch-agnostic norm
layer (e.g., layer norm) are more suitable for TTA

II: WHAT LEADS TO UNSTABLE TTA?
• TTA on models with GN/LN layers do not always

succeed, and still suffer from failure cases
• Online entropy minimization tends to result in col-

lapsed trivial solutions, i.e., predicting all samples
to the same class, as shown in (a) vs. (b)

• Some large/noisy gradients cause collapse, as in (c)
• We address this collapse issue by proposing a SAR

approach, as illustrated below

SAR: SHARPNESS-AWARE AND RELIABLE ENTROPY MINIMIZATION
• Directly filtering out noisy gradients via gradients norm is infeasible, since the threshold is hard to set
• We seek to filter samples via an alternative metric, and investigate the relation of entropy vs. gradients norm
❶ Reliability: discard partial large/noisy gradients via entropy

• Remove samples in Areas 1 and 2:
min
Θ

S(x)E(x; Θ), where S(x) ≜ I{E(x;Θ)<E0}(x)

• Samples in Area 1 have large gradients
• Samples in Area 2 are unconfident (Niu et al., 2022)

❷ Sharpness-Aware: make the update robust to remaining large/noisy gradients

• Alleviate the effects of samples in Area 4
• Constrain the entropy surface to be flat:

min
Θ

ESA(x; Θ), where ESA(x; Θ) ≜ max
∥ϵ∥2≤ρ

E(x; Θ + ϵ)

• Following SAM (Foret et al., 2020) to solve this optimization problem
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RESULTS UNDER ONLINE IMBALANCED LABEL DISTRIBUTION SHIFTS

• Our SAR achieves the best per-
formance over ResNet50- GN
and VitBase-LN

• Compare with Tent, OOD ac-
curacy clearly improves, i.e.,
22.0% → 37.2% on R-50-GN

• Entropy minimization on
LN/GN models perform better
than that on BN models

Results on ImageNet-C with severity level 5 regarding Corruption Accuracy (%)

ABLATION STUDIES OF SAR

• Reliable and Sharpness-aware
entropy, in conjunction, yield
stable TTA

Corruption Accuracy (%) on ImageNet-C (level 5) under online imbalanced label distribution shifts

EFFICIENCY COMPARISON
• While improving adaptation stability, our SAR

maintains high efficiency

Time for processing 50,000 images (Gaussian noise, level 5 
on ImageNet-C) via a single V100 GPU on ResNet50-GN

COMPARISON WITH GRADIENT CLIP
• Large δ of clip: cannot prevent model collapse
• Small δ of clip: leading to limited learning ability

and biased gradient directions
• Our SAR does not need to tune such a parameter

and yields better performance

ENTROPY SURFACE VISUALIZATION
• Results on ImageNet-C (Gaussian noise, level 5)
• The area (the deepest blue) within the lowest loss

contour line of our SAR is larger than Tent
• Our SAR has a flatter entropy surface, and thus is

more insensitive to noisy updates
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