

BACKGROUND: DATA SHIFTS

Distribution shifts: when using a pre-trained model, the test samples may encounter natural variations or corruptions that were not present in training data:

- *Lighting changes* due to weather change
- *Noises* due to sensor degradation, etc.

ImageNet-C (Hendrycks & Dietterich, 2019)

These shifts can significantly impact the performance of the model and cause it to degrade

TEST-TIME ADAPTATION (TTA)

• TTA aims to address data shifts by adapting the trained model on test data before prediction

 $\mathcal{L}(\mathbf{x}^{s}, \mathbf{y}^{s}) + \mathcal{L}(\mathbf{x}^{s})$

 $\mathcal{L}(\mathbf{x}^t)$

PROBLEM: TTA IN THE WILD

Test-time training [ICML 20]

Fully test-time adaptation [ICLR 21]

Limitation: online TTA is unstable under wild test scenarios (such as mixed domain shifts, single data, and imbalance), leading to severe model collapse

Goal: we aim to figure out the reason why TTA is unstable in the wild world, and then boost its stability

MAIN CONTRIBUTIONS

- We find that batch-agnostic norm layers (i.e., GN and LN) are more beneficial to stable TTA than BN under wild test settings
- We propose a simple yet effective SAR, which addresses the model collapse of online TTA and makes it more stable under wild test settings

Towards Stable Test-Time Adaptation in Dynamic Wild World

Shuaicheng Niu*, Jiaxiang Wu*, Yifan Zhang*, Zhiquan Wen, Yaofo Chen, Peilin Zhao, Mingkui Tan

- Batch Normalization (BN) is a crucial factor hindering TTA stability under the wild test settings
- Most TTA methods are built upon test-time BN statistics adaptation: $y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}, \hat{x}^{(k)} =$
 - $(x^{(k)} \mathbb{E}[x^{(k)}]) / \sqrt{\operatorname{Var}[x^{(k)}]}$
- However, the E and Var estimation under wild settings would be inaccurate:
- Mixed domain shifts: ideally each domain should have its own statistics
- *Single sample*: hard to estimate E&Var accurately
- *Imbalanced label shifts*: biased to specific classes
- Observation: models with **batch-agnostic** norm layer (*e.g.*, layer norm) are **more suitable** for TTA

SAR: SHARPNESS-AWARE AND RELIABLE ENTROPY MINIMIZATION

- Directly filtering out noisy gradients via gradients norm is infeasible, since the threshold is hard to set
- We seek to filter samples via an alternative metric, and investigate the relation of entropy vs. gradients norm
- **O Reliability:** discard partial large/noisy gradients via entropy
 - Remove samples in Areas 1 and 2:

 $\min_{\Theta} S(\mathbf{x}) E(\mathbf{x}; \Theta), \text{ where } S(\mathbf{x}) \triangleq \mathbb{I}_{\{E(\mathbf{x}; \Theta) < E_0\}}(\mathbf{x})$

- Samples in Area 1 have large gradients
- Samples in Area 2 are unconfident (Niu et al., 2022)

Sharpness-Aware: make the update robust to remaining large/noisy gradients

- Alleviate the effects of samples in Area 4
- Constrain the entropy surface to be flat:

 $\min_{\Theta} E^{SA}(\mathbf{x}; \Theta), \text{ where } E^{SA}(\mathbf{x}; \Theta) \triangleq \max_{\|\boldsymbol{\epsilon}\|_2 \le \rho} E(\mathbf{x}; \Theta + \boldsymbol{\epsilon})$

• Following SAM (Foret et al., 2020) to solve this optimization problem

Results under Online Imbalanced Label Distribution Shifts

- Our SAR achieves the best performance over ResNet50- GN and VitBase-LN
- Compare with Tent, OOD accuracy clearly improves, i.e., $22.0\% \rightarrow 37.2\%$ on R-50-GN
- Entropy minimization on LN/GN models perform better than that on BN models

ABLATION STUDIES OF SAR

• Reliable and Sharpness-aware entropy, in conjunction, yield stable TTA

	Results on ImageNet-C with severity level 5 regarding Corruption Accuracy (%)															
Model+Method	Gauss.	Shot	Impul.	Defoc.	Glass	Motion	Zoom	Snow	Frost	Fog	Brit.	Contr.	Elastic	Pixel	JPEG	Avg.
ResNet50 (BN)	2.2	2.9	1.8	17.8	9.8	14.5	22.5	16.8	23.4	24.6	59.0	5.5	17.1	20.7	31.6	18.0
• MEMO	7.4	8.6	8.9	19.8	13.2	20.8	27.5	25.6	28.6	32.3	60.8	11.0	23.8	33.2	37.7	24.0
• DDA	32.2	33.1	32.0	14.6	16.4	16.6	24.4	20.0	25.5	17.2	52.2	3.2	35.7	41.8	45.4	27.2
• Tent	1.2	1.4	1.4	1.0	0.9	1.2	2.6	1.7	1.8	3.6	5.0	0.5	2.6	3.2	3.1	2.1
• EATA	0.3	0.3	0.3	0.2	0.2	0.5	0.9	0.8	0.9	1.8	3.5	0.2	0.8	1.2	0.9	0.9
ResNet50 (GN)	17.9	19.9	17.9	19.7	11.3	21.3	24.9	40.4	47.4	33.6	69.2	36.3	18.7	28.4	52.2	30.6
• MEMO	18.4	20.6	18.4	17.1	12.7	21.8	26.9	40.7	46.9	34.8	69.6	36.4	19.2	32.2	53.4	31.3
• DDA	42.5	43.4	42.3	16.5	19.4	21.9	26.1	35.8	40.2	13.7	61.3	25.2	37.3	46.9	54.3	35.1
• Tent	2.6	3.3	2.7	13.9	7.9	19.5	17.0	16.5	21.9	1.8	70.5	42.2	6.6	49.4	53.7	22.0
• EATA	27.0	28.3	28.1	14.9	17.1	24.4	25.3	32.2	32.0	39.8	66.7	33.6	24.5	41.9	38.4	31.6
• SAR (ours)	$\textbf{33.1}_{\pm 1.0}$	$36.5_{\pm0.4}$	$35.5_{\pm 1.1}$	$19.2_{\pm0.4}$	$\textbf{19.5}_{\pm 1.2}$	$\textbf{33.3}_{\pm 0.5}$	$27.7_{\pm 4.0}$	$23.9_{\pm 5.1}$	$45.3_{\pm0.4}$	$\textbf{50.1}_{\pm 1.0}$	71.9 $_{\pm 0.1}$	$\textbf{46.7}_{\pm 0.2}$	$7.1_{\pm 1.8}$	$\textbf{52.1}_{\pm 0.5}$	$\textbf{56.3}_{\pm 0.1}$	$37.2_{\pm 0.6}$
VitBase (LN)	9.4	6.7	8.3	29.1	23.4	34.0	27.0	15.8	26.3	47.4	54.7	43.9	30.5	44.5	47.6	29.9
• MEMO	21.6	17.4	20.6	37.1	29.6	40.6	34.4	25.0	34.8	55.2	65.0	54.9	37.4	55.5	57.7	39.1
• DDA	41.3	41.3	40.6	24.6	27.4	30.7	26.9	18.2	27.7	34.8	50.0	32.3	42.2	52.5	52.7	36.2
• Tent	32.7	1.4	34.6	54.4	52.3	58.2	52.2	7.7	12.0	69.3	76.1	66.1	56.7	69.4	66.4	47.3
• EATA	35.9	34.6	36.7	45.3	47.2	49.3	47.7	56.5	55.4	62.2	72.2	21.7	56.2	64.7	63.7	49.9
• SAR (ours)	46.5 $_{\pm 3.0}$	43.1 $_{\pm 7.4}$	48.9 $_{\pm 0.4}$	55.3 _{±0.1}	54.3 $_{\pm 0.2}$	58.9 $_{\pm 0.1}$	54.8 $_{\pm 0.2}$	$53.6_{\pm 7.1}$	$46.2_{\pm 3.5}$	69.7 $_{\pm 0.3}$	76.2 $_{\pm 0.1}$	66.2 $_{\pm 0.3}$	$60.9_{\pm 0.3}$	69.6 $_{\pm 0.1}$	66.6 $_{\pm 0.1}$	58.0 ± 0.5

OAN																
Corru	ption A	ccura	cv (%) c	on Imac	eNet-	C (level	5) und	er onli	ne imk	baland	ced la	bel dist	tributio	n shift	S	
	1	Noise	J ()		В	lur	,		Weat	her			Digi	tal		
Model+Method	Gauss.	Shot	Impul.	Defoc.	Glass	Motion	Zoom	Snow	Frost	Fog	Brit.	Contr.	Elastic	Pixel	JPEG	Avg.
ResNet50 (GN)	3.2	4.1	4.0	17.1	8.5	27.0	24.4	17.9	25.5	2.6	72.1	45.8	8.2	52.2	56.2	24.6
• reliable	34.5	36.8	36.2	19.5	3.1	33.6	14.5	20.5	38.3	2.4	71.9	47.0	8.3	52.1	56.4	31.7
 reliable+sa 	33.8	35.9	36.4	19.2	18.7	33.6	24.5	23.5	45.2	49.3	71.9	46.6	9.2	51.6	56.4	37.0
 reliable+sa+reset 	33.6	36.1	36.2	19.1	18.6	33.9	24.7	22.5	45.7	49.0	71.9	46.6	9.2	51.5	56.3	37.0

approach, as illustrated below

EFFICIENCY COMPARISON

- While improving adaptation stability, our SAR maintains high efficiency
- Time for processing 50,000 images (Gaussian noise, level 5 on ImageNet-C) via a single V100 GPU on ResNet50-GN

Method	GPU time
MEMO (Zhang et al., 2022)	55,980 secs
DDA (Gao et al., 2022)	146,220 secs
TTT (Sun et al., 2020)	3,600 secs
Tent (Wang et al., 2021)	110 secs
EATA (Niu et al., 2022a)	114 secs
SAR (ours)	115 secs

COMPARISON WITH GRADIENT CLIP

- Large δ of clip: cannot prevent model collapse
- Small δ of clip: leading to limited learning ability and biased gradient directions
- Our SAR does not need to tune such a parameter and yields better performance

ENTROPY SURFACE VISUALIZATION

- Results on ImageNet-C (Gaussian noise, level 5)
- The area (the deepest blue) within the lowest loss contour line of our SAR is larger than Tent
- Our SAR has a flatter entropy surface, and thus is more insensitive to noisy updates

CONTACT INFORMATION

Code https://github.com/ mr-eggplant/SAR Email Yifan Zhang

yifan.zhangg@u.nus.edu

