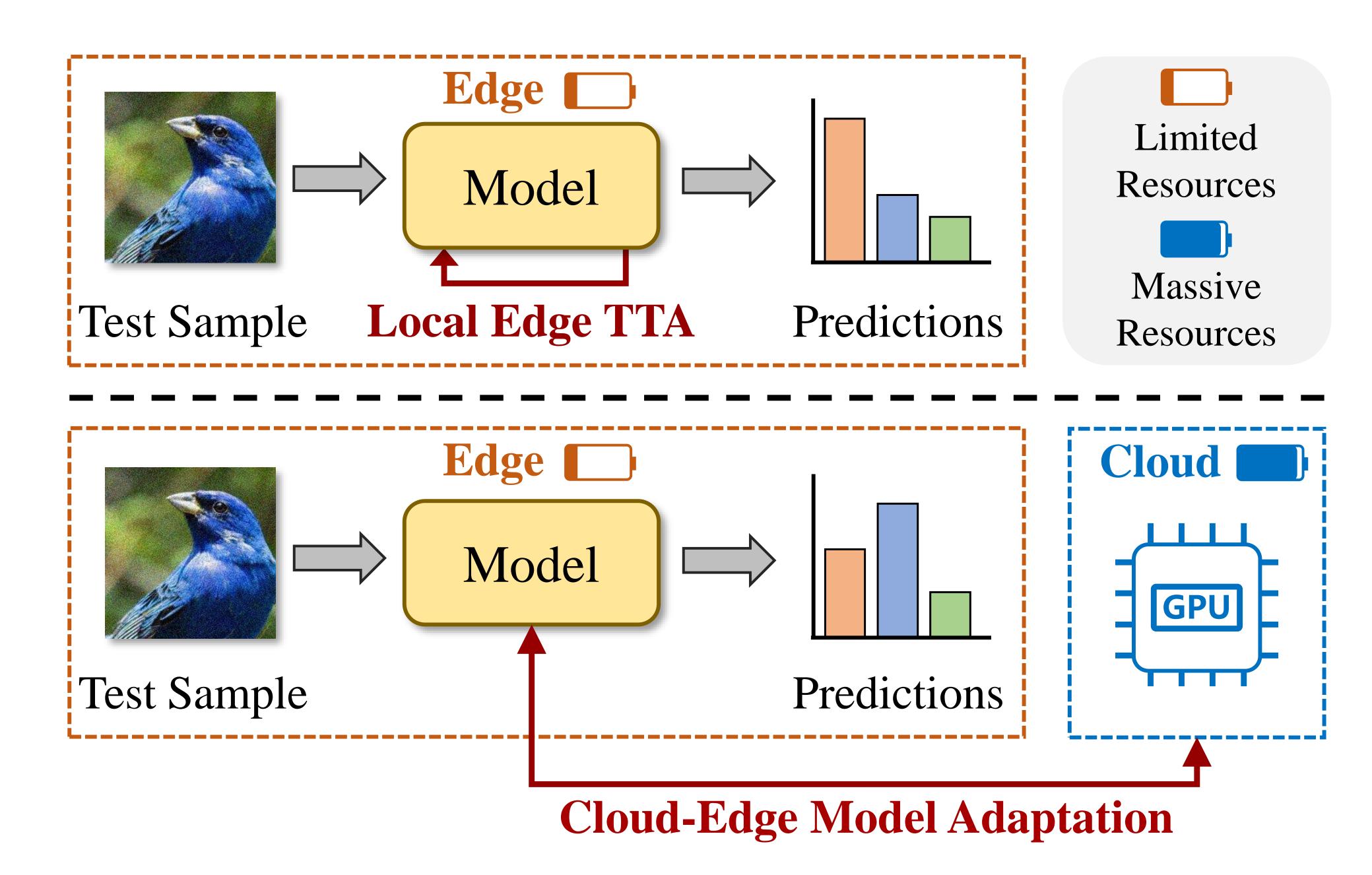


Towards Robust and Efficient Cloud-Edge Elastic Model Adaptation via Selective Entropy Distillation Yaofo Chen*, Shuaicheng Niu*, Shoukai Xu, Hengjie Song, Yaowei Wang†, Mingkui Tan† LCLR

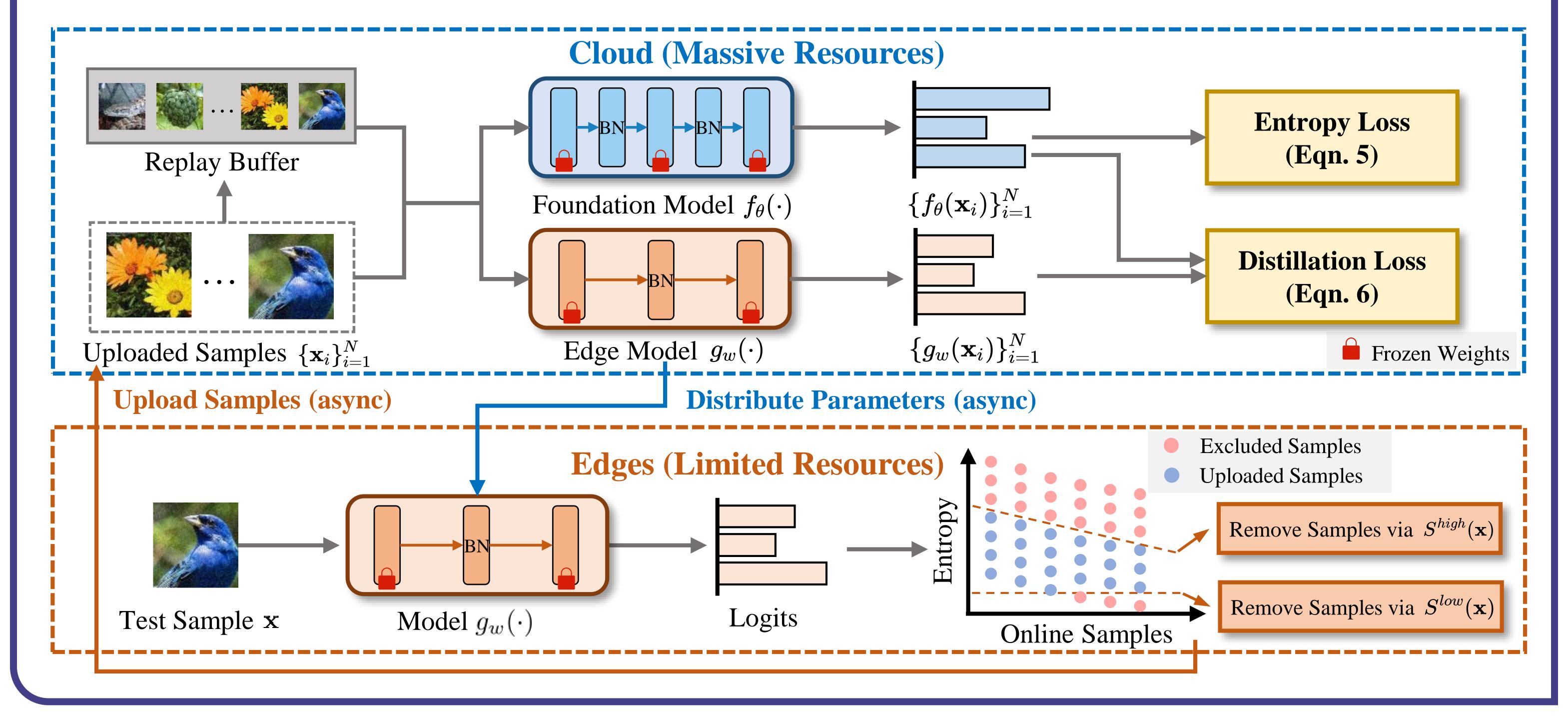

BACKGROUND

When deploying a cloud-trained model in the edge devices:

- The model remains fixed due to the high cost of adaptation for resource-limited edge devices.
- It is difficult for the fixed model to handle distribution shifted data.

Model Adaptation in Cloud-Edge Collaborative Style

- Local Test-time Adapttion (upper): It locally performs adaptation only in the edge with limited resources.
- Cloud-edge Adaptation (lower): It conducts model adaptation more efficiently in the edge, which offloads the heavy adaptation workloads to the cloud with massive resources.


Raised Challenges: 1) The data communication cost may be heavy if uploading all samples. 2) It is unclear how to exploit the massive resource in the cloud to enhance the performance.

CONTRIBUTIONS

- We establish a Cloud-Edge Elastic Model Adaptation (CEMA) paradigm designed for efficient collaborative model adaptation. Our CEMA is a general paradigm that is applicable to online adapt edge models to new dynamically changing environments.
- We reduce communication costs by devising entropy-based criteria for excluding unreliable and low-informative samples from being uploaded. Experimental results show CEMA lowers 60% communication cost than SOTAs on ImageNet-C (Challenge 1).
- We improve the adaptation performance of the edge model by performing a replay-based entropy distillation, which minimizes prediction entropy and the KL divergence between the edge model and the foundation model using a sample replay strategy (Challenge 2).

OVERVIEW OF CLOUD-EDGE ELASTIC MODEL ADAPTATION

- **Edge Side**: To reduce the communication cost, the edge asynchronously uploads samples to the cloud by excluding unreliable and low-informative ones.
- Cloud Side: We first adapt the foundation model via entropy minimization and meanwhile stores uploaded samples into a replay buffer. Then, with samples from the edge and the replay buffer, we adapt the edge model $g_w(\cdot)$ by distillating from the foundation model $f_{\theta}(\cdot)$.

ENTROPY-BASED SAMPLE FILTRATION

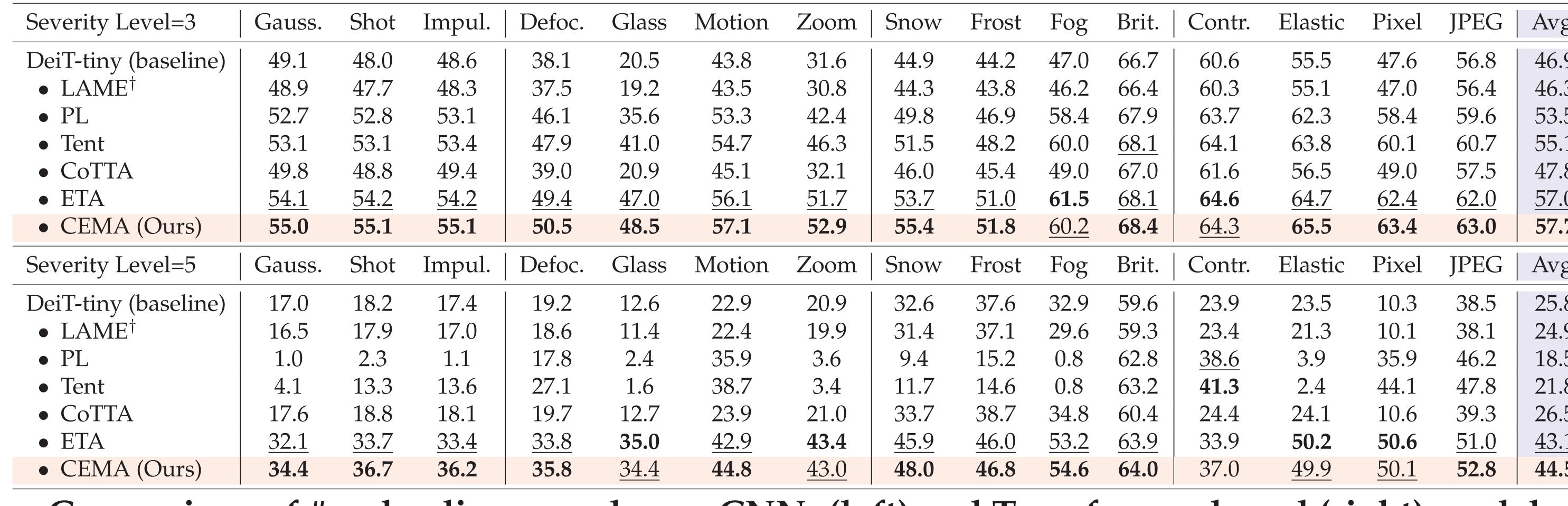
Challenge: Uploading all test samples to the cloud introduces a heavy communication burden. Solution: We exclude the unreliable (high-entropy) samples via a dynamically adjudsted threshold E_{\max}^t and low-informative (low-entropy) samples via a fixed threshold E_{\min}

$$S^{high}(\mathbf{x}) = \mathbb{1}_{\{E(\mathbf{x};w) < E_{\max}^t\}}(\mathbf{x}), \ S^{low}(\mathbf{x}) = \mathbb{1}_{\{E(\mathbf{x};\theta) > E_{\min}\}}(\mathbf{x}).$$

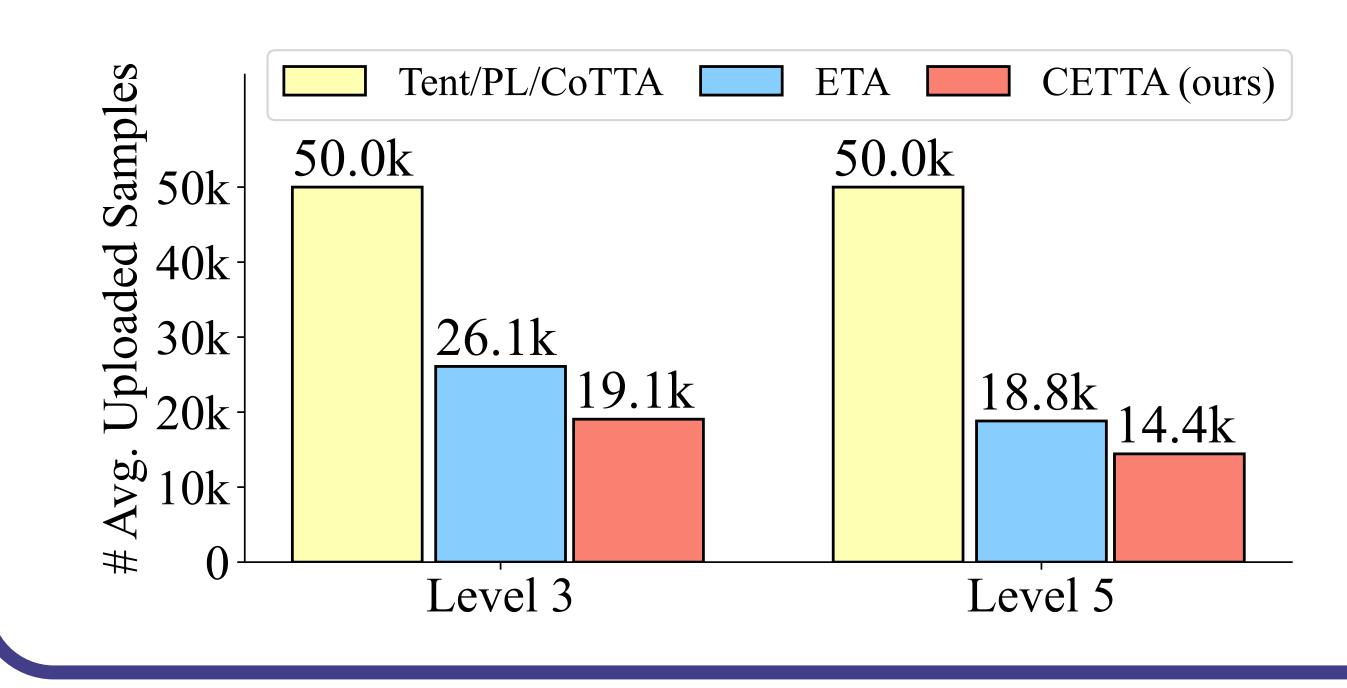
where the threshold would be changed dynamically according the entropy of current batch samples $E_{\max}^t \leftarrow \lambda \times E_{\max}^{t-1} \times \frac{E_{\text{avg}}^t}{F^{t-1}}$, t denote the batch index.

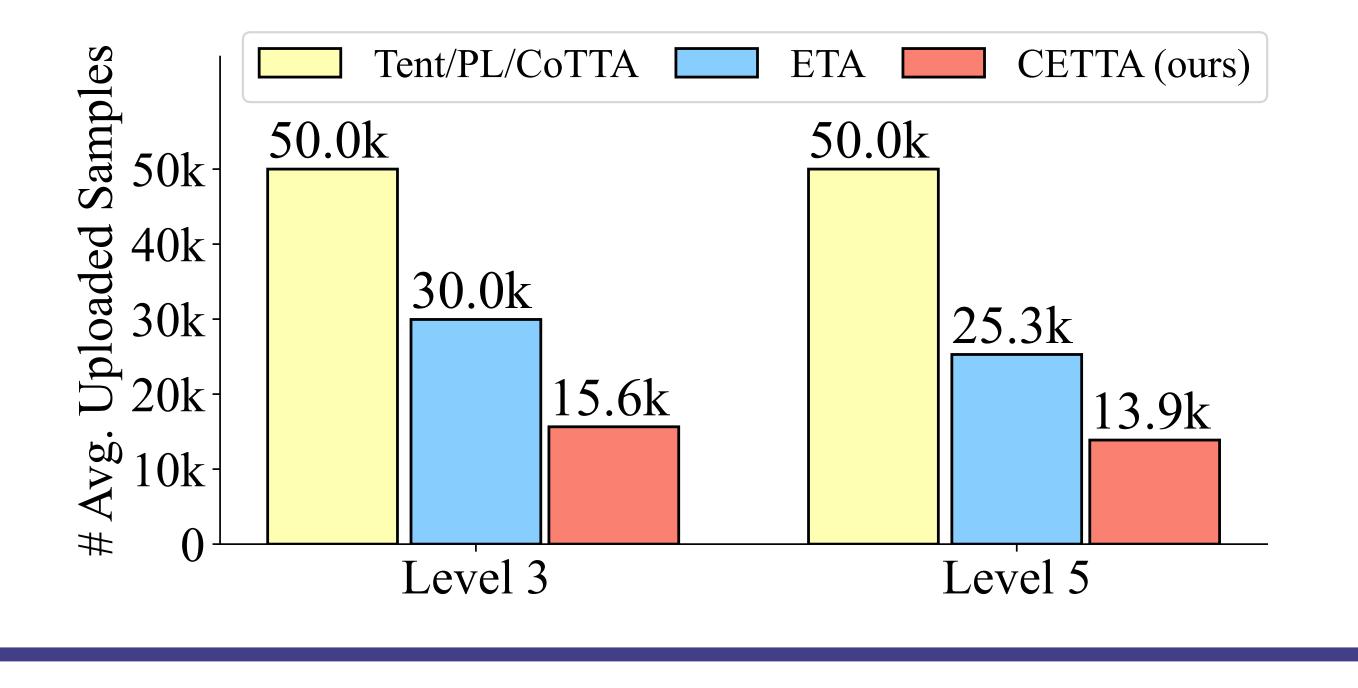
REPLAY-BASED KNOWLEDGE DISTILLATION

Challenge: Vanilla distillation needs a large number of samples but we have only limited ones. **Solution**: Upon receiving uploaded samples $\hat{\mathcal{X}} = \{\mathbf{x}_i\}_{i=1}^N$, we put them into a **replay buffer** $\mathcal{B} = \mathcal{B} \cup \hat{\mathcal{X}}$. Then, based on newly uploaded samples and samples from the replay buffer, we optimize the edge model $g_w(\cdot)$ by distilling from adapted foundation model $f_{\theta}(\cdot)$

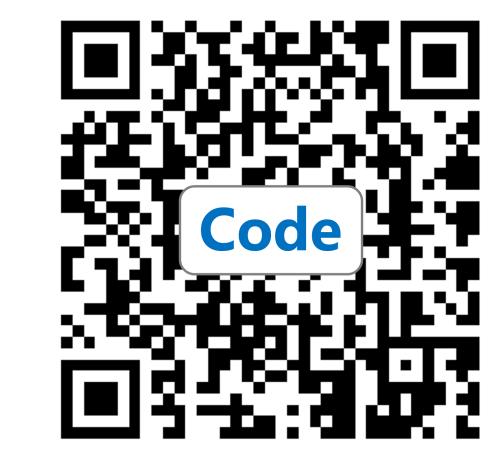

$$\min_{\tilde{w}} H(\mathbf{x}) [\alpha \mathcal{L}_{\mathrm{KL}}(g_w(\mathbf{x}), f_{\theta}(\mathbf{x})) + \beta \mathcal{L}_{\mathrm{CE}}(g_w(\mathbf{x}), \hat{y}) + \mathcal{L}_{\mathrm{ENT}}(g_w(\mathbf{x})))]. \tag{2}$$

COMPARISONS WITH SOTA METHODS


Comparisons	with (CNN-based	models on	ImageNet-C	


													O			
Severity Level=3	Gauss.	Shot	Impul.	Defoc.	Glass	Motion	Zoom	Snow	Frost	Fog	Brit.	Contr.	Elastic	Pixel	JPEG	Avg
ResNet18 (baseline)	21.6	19.9	18.7	29.9	15.8	28.7	27.6	27.6	23.8	35.5	62.7	38.1	51.8	41.6	53.0	33.1
 BN Adaptation[†] 	42.3	39.8	40.0	37.5	31.4	45.1	44.3	40.8	36.2	53.9	65.0	58.2	60.2	58.0	57.7	47.4
• ONDA [†]	40.0	38.9	37.5	29.5	27.5	43.8	43.9	40.2	35.2	54.6	65.1	56.1	59.7	58.6	57.6	45.9
 LAME[†] 	20.6	18.9	17.2	29.5	14.7	28.3	26.9	26.8	23.2	34.9	62.4	37.5	51.3	41.1	52.5	32.4
• PL	48.1	48.0	46.1	41.1	39.7	51.3	49.9	47.3	39.8	58.6	64.9	59.2	62.5	60.8	59.4	51.8
Tent	47.2	47.1	45.1	40.0	38.2	50.4	49.4	46.7	40.1	58.1	64.9	59.0	62.5	60.5	59.2	51.2
CoTTA	42.0	40.7	39.8	30.3	30.1	46.3	46.1	41.9	36.5	56.2	64.9	58.0	60.2	59.3	58.1	47.4
• ETA	50.1	50.2	48.6	44.0	42.7	52.9	51.4	49.9	43.5	59.5	65.2	60.9	62.9	61.6	59.9	53.
• CEMA (Ours)	51.1	51.2	49.8	45.2	44.1	53.7	52.0	50.8	44.2	60.1	65.0	61.1	62.9	61.6	59.8	54.2
Severity Level=5	Gauss.	Shot	Impul.	Defoc.	Glass	Motion	Zoom	Snow	Frost	Fog	Brit.	Contr.	Elastic	Pixel	JPEG	Ave
ResNet18 (baseline)	1.5	2.3	1.5	11.4	8.7	11.1	17.6	10.6	16.2	14.0	51.5	3.4	16.5	23.3	30.7	14.7
 BN Adaptation[†] 	16.6	16.2	17.3	18.6	18.2	25.9	34.7	28.4	29.8	41.2	58.5	22.2	40.1	45.3	38.0	30.1
• ONDA [†]	13.7	15.0	14.1	12.3	13.2	23.7	34.2	29.4	28.6	40.9	58.5	12.3	39.3	44.6	37.5	27.8
 LAME[†] 	0.9	1.1	0.6	11.2	8.2	10.8	17.0	8.7	15.6	12.4	51.1	3.3	14.9	22.5	30.1	13.9
• PL	24.8	26.8	24.6	20.3	21.3	33.6	41.8	39.0	32.4	49.9	59.5	11.4	47.9	51.5	47.0	35.4
						00 1	11 0	27.0	33.5	48.9	59.3	18.0	46.9	50.6	45.9	35.
Tent	22.8	25.0	23.2	20.1	21.1	32.4	41.0	37.8	33.3	40.9	57.5	10.0	10.7	50.0	10.7	
TentCoTTA		25.0 16.2	23.215.7	20.1 11.8	21.1 14.9	32.4 26.9	41.0 36.9	37.8	29.9	43.6	59.2	17.0	40.9	47.2	39.3	
	22.8															29.1 38.1

• Comparisons with Transformer-based models on ImageNet-C


• Comparions of # uploading samples on CNN- (left) and Transformer-based (right) models

CONTACT INFORMATION AND CODE

- Email: chenyaofo@gmail.com
- Email: mingkuitan@scut.edu.cn
- Code: https://github.com/chenyaofo/CEMA

