Contrastive Neural Architecture Search with Neural Architecture Comparators

BACKGROUND AND MOTIVATION

Limitations of existing neural architecture search (NAS) methods:

- It is non-trivial to obtain stable and accurate absolute performance for all the candidate architectures.
- It is time-consuming to obtain the absolute performance from the supernet during the search process.

CONTRIBUTIONS

- We propose a Contrastive Neural Architecture Search (CTNAS) method that searches for promising architectures by taking the comparison results between architectures as the reward.
- To guarantee that CTNAS can constantly find better architectures, we propose a curriculum updating scheme to gradually improve the base**line architecture**. In this way, CTNAS has a more stable search process and thus greatly improves the search performance.
- Extensive experiments on three search spaces demonstrate that the searched architectures of our CTNAS outperform the architectures searched/designed by state-of-the-art methods.

CONTRASTIVE NEURAL ARCHITECTURE SEARCH

Unlike existing methods that rely on the absolute performance, we seek to obtain the ranking of candidate architectures with a comparison mapping, called Neural Architecture Comparator (NAC):

$$p = \Pr[\mathcal{R}(\alpha, w_{\alpha}) \ge \mathcal{R}(\alpha', w_{\alpha'})] = \operatorname{NAC}(\alpha, \alpha'; \varpi), \quad (1)$$

where ϖ is the parameter of NAC. Our NAC compares two architectures α and α' and output the probability of α being better than α' .

Based on Eqn. (1), we propose a **Contrastive Neural Architecture Search** (CTNAS) method that exploits the comparison probability predicted by NAC as the **reward signal**. Formally, given a baseline architecture $\beta \in \Omega$, we learn a policy $\pi(\alpha; \theta)$ by solving the following optimization problem:

$$\max_{\theta} \mathbb{E}_{\alpha \sim \pi(\alpha;\theta)} \Pr[\mathcal{R}(\alpha, w_{\alpha}) \geq \mathcal{R}(\beta, w_{\beta})],$$
(2)

where θ denotes the parameters of the policy. To address the above optimization problem, we train a controller with **policy gradient** method.

Yaofo Chen^{*}, Yong Guo^{*}, Qi Chen, Minli Li, Wei Zeng, Yaowei Wang[†], Mingkui Tan[†]

OVERVIEW OF CTNAS

Our NAC first takes the sampled architecture and the baseline one as I In Problem (2), if β is too weak or strong, the optimization problem inputs, and outputs the comparison probability of them. Then, the becomes meaningless (*i.e.*, the optimal objective value will be trivially 1 controller adopts the probability as the reward. During the training, we or 0, respectively). To address this issue, we propose a baseline updating **improve the baseline** with the architectures sampled from the controller. scheme to **improve/update the baseline gradually**.

TRAINING METHOD

Algorithm 1: The overall algorithm for CTNAS.

Require: Learning rate η , parameters M, N and K ($K \ll N$).

- Randomly sample a set of architectures from Ω and obtain their accuracy $\{\alpha_i, \mathcal{R}(\alpha_i, w_{\alpha_i})\}_{i=1}^M$ by training a supernet.
- 2: Construct training data $\mathcal{A} = \{(\alpha_i, \alpha'_i, y_i)\}_{i=1}^{M(M-1)/2}$ for NAC by traversing Based on the graph data pair $(\mathbf{A}_{\alpha}, \mathbf{X}_{\alpha})$, we use a two-layer GCN to all pairwaise combinations.
- Initialize parameters θ for $\pi(\cdot; \theta)$ and ϖ for NAC.
- E Initialize the baseline architecture $\beta \sim \pi(\cdot; \theta)$.
- 5: Let $\mathcal{C} = \mathcal{A}, \mathcal{D} = \emptyset, \mathcal{B} = \emptyset$.
- 6: for t = 1, ..., T do
- Train NAC with data $C = \{(\alpha_i, \alpha'_i, y_i)\}_{i=1}^{|C|}$.
- // Train the controller with NAC
- Sample N architectures $\{\alpha_j\}_{j=1}^N$ by $\alpha \sim \pi(\cdot; \theta)$.
- Update θ using policy gradient: 10:
- $\theta \leftarrow \theta + \eta \frac{1}{N} \sum_{j=1}^{N} \left[\nabla_{\theta} \log \pi(\alpha_j; \theta) \operatorname{NAC}(\alpha_j, \beta; \varpi) \right].$
- 11: // Explore more data for training NAC
- 12: Sample N architectures $S = \{\alpha_i\}_{i=1}^N \sim \pi(\cdot; \theta)$.
- Construct \mathcal{D} with \mathcal{S} by the data exploration method.
- Let $C = C \cup D$ and $B = B \cup \{\beta\}$. 14:
- Update the baseline β with \mathcal{B} and \mathcal{S} using Alg. 2. 15:

16: **end for**

BASELINE UPDATING VIA CURRICULUM LEARNING

Algorithm 2: Baseline updating via curriculum learning.

Require: Existing baseline architectures *B*, sampled architectures *S*, and learned architecture comparator $NAC(\cdot, \cdot; \varpi)$.

- 1: Initialize comparison score $\hat{s} = 0$.
- 2: Construct a candidate baseline set $\mathcal{H} = \mathcal{B} \cup \mathcal{S} = \{\alpha_i\}_{i=1}^{|\mathcal{H}|}$.
- 3: for $i = 1, ..., |\mathcal{H}|$ do
- 4: Compute score for architecture $\alpha_i \in \mathcal{H}$ by

$$s_i = \frac{1}{|\mathcal{H}| - 1} \sum_{1 \le j \le |\mathcal{H}|, i \ne j} \operatorname{NAC}(\alpha_i, \alpha_j; \varpi).$$

5: if $s_i \ge \hat{s}$ then $\hat{s} = s_i$ and $\beta = \alpha_i$. end if

6: end for

7: Return β .

NEURAL ARCHITECTURE COMPARATOR

Given two architectures α and α' as inputs, our NAC predicts the proba**bility of** α **being better than** α' . To this end, we concatenate the features of α and α' and send them to a fully-connected (FC) layer:

$$p = \operatorname{NAC}(\alpha, \alpha'; \varpi) = \sigma\left([\mathbf{Z}_{\alpha}; \mathbf{Z}_{\alpha'}] \mathbf{W}^{FC} \right), \qquad (3)$$

where Z_{α} denotes the features extract from α , \mathbf{W}^{FC} denotes the weight of the FC layer, $[\cdot; \cdot]$ refers to the concatenation operator.

extract the architecture features \mathbf{Z}_{α} :

$$\mathbf{Z}_{\alpha} = f(\mathbf{X}_{\alpha}, \mathbf{A}_{\alpha}) = \mathbf{A}_{\alpha} \phi \left(\mathbf{A}_{\alpha} \mathbf{X}_{\alpha} \mathbf{W}^{(0)} \right) \mathbf{W}^{(1)}, \tag{4}$$

where $\mathbf{W}^{(0)}$ and $\mathbf{W}^{(1)}$ denote the weights of GCN, ϕ is the a non-linear activation function (*e.g.*, ReLU), and \mathbf{Z}_{α} refers to the extracted features.

DATA EXPLORATION FOR TRAINING NAC

Learning a good NAC requires a set of labeled data, *i.e.*, $\{(\alpha_i, \alpha'_i, y_i)\}_{i=1}^{M}$ However, we can only obtain **limited labeled data** in practice.

To address this issue, we propose a **data exploration** method that adopts unlabeled architecture pairs to assist the training. Specifically, we take the class with maximum probability predicted by NAC as the label.

COMPARISONS WITH SOTA METHODS

• Comparisons with state-of-the-art methods on NAS-Bench-101

Method	KTau	Average Accuracy (%)	Best Accuracy (%)	Best Rank (%)	#Queries
Random	_	89.31 ± 3.92	93.46	1.29	423
DARTS	_	92.21 ± 0.61	93.02	13.47	_
ENAS	_	91.83 ± 0.42	92.54	22.88	_
FBNet	_	92.29 ± 1.25	93.98	0.05	_
SPOS	0.195	89.85 ± 3.80	93.84	0.07	_
FairNAS	-0.232	91.10 ± 1.84	93.55	0.77	_
ReNAS	0.634	93.90 ± 0.21	94.11	0.04	423
RegressionNAS	0.430	89.51 ± 4.94	93.65	0.40	423
CTNAS (Ours)	0.751	$\textbf{93.92} \pm \textbf{0.18}$	94.22	0.01	423

• Comparisons with state-of-the-art methods on ImageNet

Search Space	Architecture	Test Accuracy (%)		_ #MAdds (M)	$\#O_{110}ries(K)$	Search Time	Total Time
		Top-1	Top-5		#Querres (IX)	(GPU days)	(GPU days)
	MobileNetV2 (1.4 \times)	74.7	—	585	—	—	_
	ShuffleNetV2 ($2\times$)	73.7	_	524	_	_	—
NASNet	NASNet-A	74.0	91.6	564	20	_	1800
	AmoebaNet-A	74.5	92.0	555	20	_	3150
DARTS	DARTS	73.1	91.0	595	19.5	4	4
	P-DARTS	75.6	92.6	577	11.7	0.3	0.3
	PC-DARTS	75.8	92.7	597	3.4	3.8	3.8
	CNAS	75.4	92.6	576	100	0.3	0.3
MobileNet	MobileNetV3-Large	75.2	_	219			_
	FBNet-C	74.9	_	375	11.5	1.8	9
	MnasNet-A	76.7	93.3	403	8	_	—
	ProxylessNAS	75.1	92.3	465	_	_	8.3
	OFA [?]	76.4	_	397	16	1.7	51.7
	FBNetV2	76.3	92.9	321	11.5	5	25
	AtomNAS	75.9	92.0	367	78	_	—
	Random Search	76.0	92.6	314			50
	Best Sampled Architectures	76.7	93.1	382			50
	CTNAS (Ours)	77.3	93.4	482	1	0.1	50.1

• The accuracy vs. #queries among different methods on ImageNet

CONTACT INFORMATION AND CODE

- Email: mingkuitan@scut.edu.cn
- Code: https://github.com/chenyaofo/CTNAS

