
CVPR
VIRTUAL JUNE 19-25

Contrastive Neural Architecture Search with Neural Architecture Comparators
Yaofo Chen∗, Yong Guo∗, Qi Chen, Minli Li, Wei Zeng, Yaowei Wang†, Mingkui Tan†

BACKGROUND AND MOTIVATION

Limitations of existing neural architecture search (NAS) methods:

• It is non-trivial to obtain stable and accurate absolute performance
for all the candidate architectures.

• It is time-consuming to obtain the absolute performance from the
supernet during the search process.

CONTRIBUTIONS
• We propose a Contrastive Neural Architecture Search (CTNAS)

method that searches for promising architectures by taking the com-
parison results between architectures as the reward.

• To guarantee that CTNAS can constantly find better architectures, we
propose a curriculum updating scheme to gradually improve the base-
line architecture. In this way, CTNAS has a more stable search process
and thus greatly improves the search performance.

• Extensive experiments on three search spaces demonstrate that the
searched architectures of our CTNAS outperform the architectures
searched/designed by state-of-the-art methods.

CONTRASTIVE NEURAL ARCHITECTURE SEARCH
Unlike existing methods that rely on the absolute performance, we seek to
obtain the ranking of candidate architectures with a comparison mapping,
called Neural Architecture Comparator (NAC):

p = Pr[R(α,wα) ≥ R(α′, wα′)] = NAC(α, α′;$), (1)

where $ is the parameter of NAC. Our NAC compares two architectures
α and α′ and output the probability of α being better than α′.

Based on Eqn. (1), we propose a Contrastive Neural Architecture Search
(CTNAS) method that exploits the comparison probability predicted by
NAC as the reward signal. Formally, given a baseline architecture β ∈ Ω,
we learn a policy π(α; θ) by solving the following optimization problem:

max
θ

Eα∼π(α;θ) Pr[R(α,wα) ≥ R(β,wβ)], (2)

where θ denotes the parameters of the policy. To address the above
optimization problem, we train a controller with policy gradient method.

OVERVIEW OF CTNAS
Our NAC first takes the sampled architecture and the baseline one as
inputs, and outputs the comparison probability of them. Then, the
controller adopts the probability as the reward. During the training, we
improve the baseline with the architectures sampled from the controller.

Compute

Reward

Sample an architecture with the learned policy 𝝅 𝜶;𝜽

NAC

Update the Baseline

Sampled

Architecture 𝜶

Baseline

Architecture 𝛽

Baseline Set

Selector

Candidate Data Set

Selector

Baseline Set Updating

Data Exploration

RNN

Ll

RNN

Ll

RNN

Ll

Ll

Controller

TRAINING METHOD

Algorithm 1: The overall algorithm for CTNAS.
Require: Learning rate η, parameters M , N and K (K � N).

1: Randomly sample a set of architectures from Ω and obtain their accuracy
{αi,R(αi, wαi)}Mi=1 by training a supernet.

2: Construct training data A={(αi, α′i, yi)}
M(M−1)/2
i=1 for NAC by traversing

all pairwaise combinations.
3: Initialize parameters θ for π(·; θ) and $ for NAC.
4: Initialize the baseline architecture β ∼ π(·; θ).
5: Let C=A, D=∅, B=∅.
6: for t = 1, . . . , T do
7: Train NAC with data C={(αi, α′i, yi)}

|C|
i=1.

8: // Train the controller with NAC
9: Sample N architectures {αj}Nj=1 by α ∼ π(·; θ).

10: Update θ using policy gradient:
θ←θ+η 1

N

∑N
j=1 [∇θ log π(αj ; θ)NAC(αj , β;$)].

11: // Explore more data for training NAC
12: Sample N architectures S={αi}Ni=1 ∼ π(·; θ).
13: Construct D with S by the data exploration method.
14: Let C = C ∪ D and B = B ∪ {β}.
15: Update the baseline β with B and S using Alg. 2.
16: end for

BASELINE UPDATING VIA CURRICULUM LEARNING

In Problem (2), if β is too weak or strong, the optimization problem
becomes meaningless (i.e., the optimal objective value will be trivially 1
or 0, respectively). To address this issue, we propose a baseline updating
scheme to improve/update the baseline gradually.

Algorithm 2: Baseline updating via curriculum learning.
Require: Existing baseline architectures B, sampled architectures S, and

learned architecture comparator NAC(·, ·;$).
1: Initialize comparison score ŝ = 0.
2: Construct a candidate baseline setH = B ∪ S = {αi}|H|i=1.
3: for i = 1, . . . , |H| do
4: Compute score for architecture αi ∈ H by

si =
1

|H| − 1

∑
1≤j≤|H|,i 6=j

NAC(αi, αj ;$).

5: if si ≥ ŝ then ŝ = si and β = αi. end if
6: end for
7: Return β.

NEURAL ARCHITECTURE COMPARATOR
Given two architectures α and α′ as inputs, our NAC predicts the proba-
bility of α being better than α′. To this end, we concatenate the features
of α and α′ and send them to a fully-connected (FC) layer:

p = NAC(α, α′;$) = σ
(
[Zα;Zα′]WFC

)
, (3)

where Zα denotes the features extract from α, WFC denotes the weight
of the FC layer, [·; ·] refers to the concatenation operator.
Based on the graph data pair (Aα,Xα), we use a two-layer GCN to
extract the architecture features Zα:

Zα = f(Xα,Aα) = Aαφ
(
AαXαW

(0)
)
W(1), (4)

where W(0) and W(1) denote the weights of GCN, φ is the a non-linear
activation function (e.g., ReLU), and Zα refers to the extracted features.

DATA EXPLORATION FOR TRAINING NAC
Learning a good NAC requires a set of labeled data, i.e., {(αi, α′i, yi)}Mi=1.
However, we can only obtain limited labeled data in practice.

To address this issue, we propose a data exploration method that adopts
unlabeled architecture pairs to assist the training. Specifically, we take
the class with maximum probability predicted by NAC as the label.

COMPARISONS WITH SOTA METHODS
• Comparisons with state-of-the-art methods on NAS-Bench-101

Method KTau Average Accuracy (%) Best Accuracy (%) Best Rank (%) #Queries

Random – 89.31 ± 3.92 93.46 1.29 423
DARTS – 92.21 ± 0.61 93.02 13.47 –
ENAS – 91.83 ± 0.42 92.54 22.88 –
FBNet – 92.29 ± 1.25 93.98 0.05 –
SPOS 0.195 89.85 ± 3.80 93.84 0.07 –

FairNAS -0.232 91.10 ± 1.84 93.55 0.77 –
ReNAS 0.634 93.90 ± 0.21 94.11 0.04 423

RegressionNAS 0.430 89.51 ± 4.94 93.65 0.40 423

CTNAS (Ours) 0.751 93.92 ± 0.18 94.22 0.01 423

• Comparisons with state-of-the-art methods on ImageNet

Search Space Architecture Test Accuracy (%) #MAdds (M) #Queries (K) Search Time Total Time
Top-1 Top-5 (GPU days) (GPU days)

MobileNetV2 (1.4×) 74.7 – 585 – – –
ShuffleNetV2 (2×) 73.7 – 524 – – –

NASNet NASNet-A 74.0 91.6 564 20 – 1800
AmoebaNet-A 74.5 92.0 555 20 – 3150

DARTS

DARTS 73.1 91.0 595 19.5 4 4
P-DARTS 75.6 92.6 577 11.7 0.3 0.3

PC-DARTS 75.8 92.7 597 3.4 3.8 3.8
CNAS 75.4 92.6 576 100 0.3 0.3

MobileNet

MobileNetV3-Large 75.2 – 219 – – –
FBNet-C 74.9 – 375 11.5 1.8 9

MnasNet-A 76.7 93.3 403 8 – –
ProxylessNAS 75.1 92.3 465 – – 8.3

OFA [?] 76.4 – 397 16 1.7 51.7
FBNetV2 76.3 92.9 321 11.5 5 25

AtomNAS 75.9 92.0 367 78 – –
Random Search 76.0 92.6 314 – – 50

Best Sampled Architectures 76.7 93.1 382 – – 50
CTNAS (Ours) 77.3 93.4 482 1 0.1 50.1

• The accuracy vs. #queries among different methods on ImageNet

103 104 105

#Queries

73

74

75

76

77

A
cc

u
ra

cy
 (

%
)

NASNet-A

AmoebaNet-A

DARTS

P-DARTS
PC-DARTS

CNASFBNet-C

MnasNet-A3

SPOS

OFA
FBNetV2 AtomNAS

CTNAS (Ours)

CONTACT INFORMATION AND CODE

• Email: mingkuitan@scut.edu.cn

• Code: https://github.com/chenyaofo/CTNAS

