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ABSTRACT

Test-time adaptation (TTA) has shown to be effective at tackling distribution shifts
between training and testing data by adapting a given model on test samples. How-
ever, the online model updating of TTA may be unstable and this is often a key
obstacle preventing existing TTA methods from being deployed in the real world.
Specifically, TTA may fail to improve or even harm the model performance when
test data have: 1) mixed distribution shifts, 2) small batch sizes, and 3) online
imbalanced label distribution shifts, which are quite common in practice. In this
paper, we investigate the unstable reasons and find that the batch norm layer is a
crucial factor hindering TTA stability. Conversely, TTA can perform more stably
with batch-agnostic norm layers, i.e., group or layer norm. However, we observe
that TTA with group and layer norms does not always succeed and still suffers
many failure cases. By digging into the failure cases, we find that certain noisy
test samples with large gradients may disturb the model adaption and result in
collapsed trivial solutions, i.e., assigning the same class label for all samples. To
address the above collapse issue, we propose a sharpness-aware and reliable en-
tropy minimization method, called SAR, for further stabilizing TTA from two
aspects: 1) remove partial noisy samples with large gradients, 2) encourage model
weights to go to a flat minimum so that the model is robust to the remaining noisy
samples. Promising results demonstrate that SAR performs more stably over prior
methods and is computationally efficient under the above wild test scenarios. The
source code is available at https://github.com/mr-eggplant/SAR.

1 INTRODUCTION

Deep neural networks achieve excellent performance when training and testing domains follow the
same distribution (He et al., 2016; Wang et al., 2018; Choi et al., 2018). However, when domain
shifts exist, deep networks often struggle to generalize. Such domain shifts usually occur in real ap-
plications, since test data may unavoidably encounter natural variations or corruptions (Hendrycks
& Dietterich, 2019; Koh et al., 2021), such as the weather changes (e.g., snow, frost, fog), sensor
degradation (e.g., Gaussian noise, defocus blur), and many other reasons. Unfortunately, deep mod-
els can be sensitive to the above shifts and suffer from severe performance degradation even if the
shift is mild (Recht et al., 2018). However, deploying a deep model on test domains with distribution
shifts is still an urgent demand, and model adaptation is needed in these cases.

Recently, numerous test-time adaptation (TTA) methods (Sun et al., 2020; Wang et al., 2021; Iwa-
sawa & Matsuo, 2021; Bartler et al., 2022) have been proposed to conquer the above domain shifts
by online updating a model on the test data, which include two main categories, i.e., Test-Time
Training (TTT) (Sun et al., 2020; Liu et al., 2021) and Fully TTA (Wang et al., 2021; Niu et al.,
2022a). In this work, we focus on Fully TTA since it is more generally to be used than TTT in two
aspects: i) it does not alter training and can adapt arbitrary pre-trained models to the test data without
access to original training data; ii) it may rely on fewer backward passes (only one or less than one)
for each test sample than TTT (see efficiency comparisons of TTT, Tent and EATA in Table 6).

∗Equal contribution. †Corresponding author. Work done when S. Niu works as an intern in Tencent AI Lab.
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Figure 1: An illustration of practical/wild test-time adaptation (TTA) scenarios, in which prior online
TTA methods may degrade severely. The accuracy of Tent (Wang et al., 2021) is measured on
ImageNet-C of level 5 with ResNet50-BN (15 mixed corruptions in (a) and Gaussian in (b-c)).

TTA has been shown boost model robustness to domain shifts significantly. However, its excellent
performance is often obtained under some mild test settings, e.g., adapting with a batch of test
samples that have the same distribution shift type and randomly shuffled label distribution (see
Figure 1 ➀). In the complex real world, test data may come arbitrarily. As shown in Figure 1 ➁,
the test scenario may meet: i) mixture of multiple distribution shifts, ii) small test batch sizes (even
single sample), iii) the ground-truth test label distribution Qt(y) is online shifted and Qt(y) may be
imbalanced at each time-step t. In these wild test settings, online updating a model by existing TTA
methods may be unstable, i.e., failing to help or even harming the model’s robustness.

To stabilize wild TTA, one immediate solution is to recover the model weights after each time
adaptation of a sample or mini-batch, such as MEMO (Zhang et al., 2022) and episodic Tent (Wang
et al., 2021). Meanwhile, DDA (Gao et al., 2022) provides a potentially effective idea to address this
issue: rather than model adaptation, it seeks to transfer test samples to the source training distribution
(via a trained diffusion model (Dhariwal & Nichol, 2021)), in which all model weights are frozen
during testing. However, these methods cannot cumulatively exploit the knowledge of previous test
samples to boost adaptation performance, and thus obtain limited results when there are lots of test
samples. In addition, the diffusion model in DDA is expected to have good generalization ability
and can project any possible target shifts to the source data. Nevertheless, this is hard to be satisfied
as far as it goes, e.g., DDA performs well on noise shifts while less competitive on blur and weather
(see Table 2). Thus, how to stabilize online TTA under wild test settings is still an open question.

In this paper, we first point out that the batch norm (BN) layer (Ioffe & Szegedy, 2015) is a key
obstacle since under the above wild scenarios the mean and variance estimation in BN layers will
be biased. In light of this, we further investigate the effects of norm layers in TTA (see Section 4)
and find that pre-trained models with batch-agnostic norm layers (i.e., group norm (GN) (Wu & He,
2018) and layer norm (LN) (Ba et al., 2016)) are more beneficial for stable TTA. However, TTA on
GN/LN models does not always succeed and still has many failure cases. Specifically, GN/LN mod-
els optimized by online entropy minimization (Wang et al., 2021) tend to occur collapse, i.e., pre-
dicting all samples to a single class (see Figure 2), especially when the distribution shift is severe. To
address this issue, we propose a sharpness-aware and reliable entropy minimization method (namely
SAR). Specifically, we find that indeed some noisy samples that produce gradients with large norms
harm the adaptation and thus result in model collapse. To avoid this, we filter partial samples with
large and noisy gradients out of adaptation according to their entropy. For the remaining samples,
we introduce a sharpness-aware learning scheme to ensure that the model weights are optimized to
a flat minimum, thereby being robust to the large and noisy gradients/updates.

Main Findings and Contributions. (1) We analyze and empirically verify that batch-agnostic norm
layers (i.e., GN and LN) are more beneficial than BN to stable test-time adaptation under wild test
settings, i.e., mix domain shifts, small test batch sizes and online imbalanced label distribution shifts
(see Figure 1). (2) We further address the model collapse issue of test-time entropy minimization
on GN/LN models by proposing a sharpness-aware and reliable (SAR) optimization scheme, which
jointly minimizes the entropy and the sharpness of entropy of those reliable test samples. SAR is
simple yet effective and enables online test-time adaptation stabilized under wild test settings.

2 PRELIMINARIES

We revisit two main categories of test-time adaptation methods in this section for the convenience
of further analyses, and put detailed related work discussions into Appendix A due to page limits.
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Test-time Training (TTT). Let fΘ(x) denote a model trained on Dtrain = {(xi, yi)}Ni=1 with
parameter Θ, where xi ∈ Xtrain (the training data space) and yi ∈ C (the label space). The goal
of test-time adaptation (Sun et al., 2020; Wang et al., 2021) is to boost fΘ(x) on out-of-distribution
test samples Dtest = {xj}Mj=1, where xj ∈ Xtest (testing data space) and Xtest ̸= Xtrain. Sun
et al. (2020) first propose the TTT pipeline, in which at training phase a model is trained on source
Dtrain via both cross-entropy LCE and self-supervised rotation prediction (Gidaris et al., 2018) LS :

min
Θb,Θc,Θs

Ex∈Dtrain
[LCE(x; Θb,Θc) + LS(x; Θb,Θs)], (1)

where Θb is the task-shared parameters (shadow layers), Θc and Θs are task-specific parameters
(deep layers) for LCE and LS , respectively. At testing phase, given a test sample x, TTT first
updates the model with self-supervised task: Θ′

b ← argminΘb
LS(x; Θb,Θs) and then use the

updated model weights Θ′
b to perform final prediction via f(x; Θ′

b,Θc).

Fully Test-time Adaptation (TTA). The pipeline of TTT needs to alter the original model training
process, which may be infeasible when training data are unavailable due to privacy/storage concerns.
To avoid this, Wang et al. (2021) propose fully TTA, which adapts arbitrary pre-trained models
for a given test mini-batch by conducting entropy minimization (Tent): min−∑

c ŷc log ŷc where
ŷc=fΘ(c|x) and c denotes class c. This method is more efficient than TTT as shown in Table 6.

3 STABLE ADAPTATION BY TEST ENTROPY AND SHARPNESS MINIMIZATION

Test-time Adaptation (TTA) in Dynamic Wild World. Although prior TTA methods have exhib-
ited great potential for out-of-distribution generalization, its success may rely on some underlying
test prerequisites (as illustrated in Figure 1): 1) test samples have the same distribution shift type;
2) adapting with a batch of samples each time, 3) the test label distribution is uniform during the
whole online adaptation process, which, however, are easy to be violated in the wild world. In wild
scenarios (Figure 1 ➁), prior methods may perform poorly or even fail. In this section, we seek to
analyze the underlying reasons why TTA fails under wild testing scenarios described in Figure 1
from a unified perspective (c.f. Section 3.1) and then propose associated solutions (c.f. Section 3.2).

3.1 WHAT CAUSES UNSTABLE TEST-TIME ADAPTATION?

We first analyze why wild TTA fails by investigating the norm layer effects in TTA and then dig into
the unstable reasons for entropy-based methods with batch-agnostic norms, e.g., group norm.

Batch Normalization Hinders Stable TTA. In TTA, prior methods often conduct adaptation on
pre-trained models with batch normalization (BN) layers (Ioffe & Szegedy, 2015), and most of
them are built upon BN statistics adaptation (Schneider et al., 2020; Nado et al., 2020; Khurana
et al., 2021; Wang et al., 2021; Niu et al., 2022a; Hu et al., 2021; Zhang et al., 2022). Specifically,
for a layer with d-dimensional input x =

(
x(1) . . . x(d)

)
, the batch normalized output are: y(k) =

γ(k)x̂(k)+β(k), where x̂(k) =
(
x(k)−E

[
x(k)

] )/√
Var

[
x(k)

]
. Here, γ(k) and β(k) are learnable

affine parameters. BN adaptation methods calculate mean E[x(k)] and variance Var[x(k)] over (a
batch of) test samples. However, in wild TTA, all three practical adaptation settings (in Figure 1)
in which TTA may fail will result in problematic mean and variance estimation. First, BN statistics
indeed represent a distribution and ideally each distribution should have its own statistics. Simply
estimating shared BN statistics of multiple distributions from mini-batch test samples unavoidably
obtains limited performance, such as in multi-task/domain learning (Wu & Johnson, 2021). Second,
the quality of estimated statistics relies on the batch size, and it is hard to use very few samples
(i.e., small batch size) to estimate it accurately. Third, the imbalanced label shift will also result
in biased BN statistics towards some specific classes in the dataset. Based on the above, we posit
that batch-agnostic norm layers, i.e., agnostic to the way samples are grouped into a batch, are more
suitable for performing TTA, such as group norm (GN) (Wu & He, 2018) and layer norm (LN) (Ba
et al., 2016). We devise our method based on GN/LN models in Section 3.2.

To verify the above claim, we empirically investigate the effects of different normalization layers
(including BN, GN, and LN) in TTA (including TTT and Tent) in Section 4. From the results,
we observe that models equipped with GN and LN are more stable than models with BN when
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Figure 2: Failure case analyses (a-c) of online test-time entropy minimization (Wang et al., 2021).
(a) and (b) record the model predictions during online adaptation. (c) illustrates how gradients norm
evolves with and without model collapse. (d) investigates the relationship between the sample’s
entropy and gradients norm. All experiments are conducted on shuffled ImageNet-C of Gaussian
noise with ResNet50 (GN), and a larger (severity) level denotes a more severe distribution shift.

performing online test-time adaptation under three practical test settings (in Figure 1) and have fewer
failure cases. The detailed empirical studies are put in Section 4 for the coherence of presentation.

Online Entropy Minimization Tends to Result in Collapsed Trivial Solutions, i.e., Predict All
Samples to the Same Class. Although TTA performs more stable on GN and LN models, it does
not always succeed and still faces several failure cases (as shown in Section 4). For example, en-
tropy minimization (Tent) on GN models (ResNet50-GN) tends to collapse, especially when the
distribution shift extent is severe. In this paper, we aim to stabilize online fully TTA under various
practical test settings. To this end, we first analyze the failure reasons, in which we find models are
often optimized to collapse trivial solutions. We illustrate this issue in the following.

During the online adaptation process, we record the predicted class and the gradients norm (pro-
duced by entropy loss) of ResNet50-GN on shuffled ImageNet-C of Gaussian noise. By comparing
Figures 2 (a) and (b), entropy minimization is shown to be unstable and may occur collapse when
the distribution shift is severe (i.e., severity level 5). From Figure 2 (a), as the adaptation goes by,
the model tends to predict all input samples to the same class, even though these samples have dif-
ferent ground-truth classes, called model collapse. Meanwhile, we notice that along with the model
starts to collapse the ℓ2-norm of gradients of all trainable parameters suddenly increases and then
degrades to almost 0 (as shown in Figure 2 (c)), while on severity level 3 the model works well and
the gradients norm keep in a stable range all the time. This indicates that some test samples produce
large gradients that may hurt the adaptation and lead to model collapse.

3.2 SHARPNESS-AWARE AND RELIABLE TEST-TIME ENTROPY MINIMIZATION

Based on the above analyses, two most straightforward solutions to avoid model collapse are filtering
out test samples according to the sample gradients or performing gradients clipping. However, these
are not very feasible since the gradients norms for different models and distribution shift types have
different scales, and thus it is hard to devise a general method to set the threshold for sample filtering
or gradient clipping (see Section 5.2 for more analyses). We propose our solutions as follows.

Reliable Entropy Minimization. Since directly filtering samples with gradients norm is infeasible,
we first investigate the relation between entropy loss and gradients norm and seek to remove samples
with large gradients based on their entropy. Here, the entropy depends on the model’s output class
number C and it belongs to (0, lnC) for different models and data. In this sense, the threshold for
filtering samples with entropy is easier to select. As shown in Figure 2 (d), selecting samples with
small loss values can remove part of samples that have large gradients (area@1) out of adaptation.
Formally, let E(x; Θ) be the entropy of sample x, the selective entropy minimization is defined by:

min
Θ

S(x)E(x; Θ), where S(x) ≜ I{E(x;Θ)<E0}(x). (2)

Here, Θ denote model parameters, I{·}(·) is an indicator function and E0 is a pre-defined parameter.
Note that the above criteria will also remove samples within area@2 in Figure 2 (d), in which the
samples have low confidence and thus are unreliable (Niu et al., 2022a).

Sharpness-aware Entropy Minimization. Through Eqn. (2), we have removed test samples in
area@1&2 in Figure 2 (d) from adaptation. Ideally, we expect to optimize the model via samples
only in area@3, since samples in area@4 still have large gradients and may harm the adaptation.
However, it is hard to further remove the samples in area@4 via a filtering scheme. Alternatively,
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Figure 3: Batch size effects of different TTA methods under different models (different normaliza-
tion layers). Experiments are conducted on ImageNet-C of Gaussian noise. We report mean and
standard deviation of 3 runs with different random seeds. ‘na’ denotes no adapt accuracy. Note that
except for Vit-LN, the standard deviation is too small to display in the figures.

we seek to make the model insensitive to the large gradients contributed by samples in area@4.
Here, we encourage the model to go to a flat area of the entropy loss surface. The reason is that a flat
minimum has good generalization ability and is robust to noisy/large gradients, i.e., the noisy/large
updates over the flat minimum would not significantly affect the original model loss, while a sharp
minimum would. To this end, we jointly minimize the entropy and the sharpness of entropy loss by:

min
Θ

ESA(x; Θ), where ESA(x; Θ) ≜ max
∥ϵ∥2≤ρ

E(x; Θ + ϵ). (3)

Here, the inner optimization seeks to find a weight perturbation ϵ in a Euclidean ball with radius
ρ that maximizes the entropy. The sharpness is quantified by the maximal change of entropy be-
tween Θ and Θ + ϵ. This bi-level problem encourages the optimization to find flat minima. To
address problem (3), we follow SAM (Foret et al., 2021) that first approximately solves the inner
optimization via first-order Taylor expansion, i.e.,

ϵ∗(Θ) ≜ argmax
∥ϵ∥2≤ρ

E(x; Θ + ϵ) ≈ argmax
∥ϵ∥2≤ρ

E(x; Θ) + ϵT∇ΘE(x; Θ) = argmax
∥ϵ∥2≤ρ

ϵT∇ΘE(x; Θ).

Then, ϵ̂(Θ) that solves this approximation is given by the solution to a classical dual norm problem:

ϵ̂(Θ) = ρ sign (∇ΘE(x; Θ)) |∇ΘE(x; Θ)|/ ∥∇ΘE(x; Θ)∥2 . (4)

Substituting ϵ̂(Θ) back into Eqn. (3) and differentiating, by omitting the second-order terms for
computation acceleration, the final gradient approximation is:

∇ΘE
SA(x; Θ) ≈ ∇ΘE(x; Θ)

∣∣
Θ+ϵ̂(Θ)

. (5)

Overall Optimization. In summary, our sharpness-aware and reliable entropy minimization is:

min
Θ̃

S(x)ESA(x; Θ), (6)

where S(x) and ESA(x; Θ) are defined in Eqns. (2) and (3) respectively, Θ̃ ⊂ Θ denote learnable
parameters during test-time adaptation. In addition, to avoid a few extremely hard cases that Eqn. (6)
may also fail, we further introduce a Model Recovery Scheme. We record a moving average em
of entropy loss values and reset Θ̃ to be original once em is smaller than a small threshold e0, since
models after occurring collapse will produce very small entropy loss. Here, the additional memory
costs are negligible since we only optimize affine parameters in norm layers (see Appendix C.2 for
more details). We summarize the details of our method in Algorithm 1 in Appendix B.

4 EMPIRICAL STUDIES OF NORMALIZATION LAYER EFFECTS IN TTA

This section designs experiments to illustrate how test-time adaptation (TTA) performs on models
with different norm layers (including BN, GN and LN) under wild test settings described in Fig-
ure 1. We verify two representative methods introduced in Section 2, i.e., self-supervised TTT (Sun
et al., 2020) and unsupervised Tent (a fully TTA method) (Wang et al., 2021). Considering that
the norm layers are often coupled with mainstream network architectures, we conduct adaptation
on ResNet-50-BN (R-50-BN), ResNet-50-GN (R-50-GN) and VitBase-LN (Vit-LN). All adopted
model weights are public available and obtained from torchvision or timm repository (Wight-
man, 2019). Implementation details of experiments in this section can be found in Appendix C.2.

5



Published as a conference paper at ICLR 2023

R-50-BN R-50-GN VitBase-LN0

20

40

60

Ac
cu

ra
cy

 (%
)

18.0

30.6 29.9
25.2

42.7 40.0

8.6

41.1
46.9

(a) TTT, Severity Level 5
No adapt
Avg. adapt

Mix adapt

R-50-BN R-50-GN VitBase-LN0

20

40

60

18.0

30.6 29.9

42.6

24.9

48.0

2.3

13.4
16.5

(b) Tent, Severity Level 5
No adapt
Avg. adapt

Mix adapt

R-50-BN R-50-GN VitBase-LN20

40

60

39.8

54.0 53.8

42.0

59.2

48.0

23.7

58.3

65.0

(c) TTT, Severity Level 3
No adapt
Avg. adapt

Mix adapt

R-50-BN R-50-GN VitBase-LN20

40

60

39.8

54.0 53.8
59.0

55.8

69.1

40.7

33.1

70.2
(d) Tent, Severity Level 3

No adapt
Avg. adapt

Mix adapt

Figure 4: Performance of TTA methods on different models (different norm layers) under the mix-
ture of 15 different corruption types (ImageNet-C). We report mean&stdev. over 3 independent runs.
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Figure 5: Performance of TTA methods with different models (different norm layers) under online
imbalanced label distribution shifts on ImageNet-C (Gaussian noise). We report mean&stdev. re-
sults of 3 runs. Note that except for VitBase-LN, the stdev. is too small to display in the figures.

(1) Norm Layer Effects in TTA Under Small Test Batch Sizes. We evaluate TTA methods (TTT
and Tent) with different batch sizes (BS), selected from {1, 2, 4, 8, 16, 32, 64}. Due to GPU memory
limits, we only report results of BS up to 8 or 16 for TTT (in original TTT BS is 1), since TTT needs
to augment each test sample multiple times (for which we set to 20 by following Niu et al. (2022a)).

From Figure 3, we have: i) For Tent, compared with R-50-BN, R-50-GN and Vit-LN are less sensi-
tive to small test batch sizes. The adaptation performance of R-50-BN degrades severely when the
batch size goes small (<8), while R-50-GN/Vit-LN show stable performance across various batch
sizes (Vit-LN on levels 5&3 and R-50-GN on level 3, in subfigures (b)&(d)). It is worth noting that
Tent with R-50-GN and Vit-LN not always succeeds and also has failure cases, such as R-50-GN on
level 5 (Tent performs worse than no adapt), which is analyzed in Section 3.1. ii) For TTT, all R-50-
BN/GN and Vit-LN can perform well under various batch sizes. However, TTT with Vit-LN is very
unstable and has a large variance over different runs, showing that TTT+VitBase is very sensitive
to different sample orders. Here, TTT performs well with R-50-BN under batch size 1 is mainly
benefited from TTT applying multiple data augmentations to a single sample to form a mini-batch.

(2) Norm Layer Effects in TTA Under Mixed Distribution Shifts. We evaluate TTA methods
on models with different norm layers when test data come from multiple shifted domains simulta-
neously. We compare ‘no adapt’, ‘avg. adapt’ (the average accuracy of adapting on each domain
separately) and ‘mix adapt’ (adapting on mixed and shifted domains) accuracy on ImageNet-C con-
sisting of 15 corruption types. The larger accuracy gap between ‘mix adapt’ and ’avg. adapt’
indicates the more sensitive to mixed distribution shifts.

From Figure 4, we have: i) For both Tent and TTT, R-50-GN and Vit-LN perform more stable than
R-50-BN under mix domain shifts. Specifically, the mix adapt accuracy of R-50-BN is consistently
poor than the average adapt accuracy across different severity levels (in all subfigures (a-d)). In
contrast, R-50-GN and Vit-LN are able to achieve comparable accuracy of mix and average adapt,
i.e., TTT on R-50-GN (levels 5&3) and Tent on Vit-LN (level 3). ii) For R-50-GN and Vit-LN, TTT
performs more stable than Tent. To be specific, Tent gets 3/4 failure cases (R-50-GN on levels 5&3,
Vit-LN on level 5), which is more than that of TTT. iii) The same as Section 4 (1), TTT on Vit-LN
has large variances over multiple runs, showing TTT+Vit-LN is sensitive to different sample orders.

(3) Norm Layer Effects in TTA Under Online Imbalanced Label Shifts. As in Figure 1 (c),
during the online adaptation process, the label distribution Qt(y) at different time-steps t may be
different (online shift) and imbalanced. To evaluate this, we first simulate this imbalanced label
distribution shift by adjusting the order of input samples (from a test set) as follows.

Online Imbalanced Label Distribution Shift Simulation. Assuming that we have totally T time-steps
and T equals to the class number C. We set the probability vector Qt(y) = [q1, q2, ..., qC ], where
qc = qmax if c = t and qc = qmin ≜ (1 − qmax)/(C − 1) if c ̸= t. Here, qmax/qmin denotes
the imbalance ratio. Then, at each t ∈ {1, 2, ..., T=C}, we sample M images from the test set
according to Qt(y). Based on ImageNet-C (Gaussian noise), we construct a new testing set that has
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online imbalanced label distribution shifts with totally 100(M) × 1000(T ) images. Note that we
pre-shuffle the class orders in ImageNet-C, since we cannot know which class will come in practice.

From Figure 5, we have: i) For Tent, R-50-GN and Vit-LN are less sensitive than R-50-BN to online
imbalanced label distribution shifts (see subfigures (b)&(d)). Specifically, the adaptation accuracy
of R-50-BN (levels 5&3) degrades severely as the imbalance ratio increases. In contrast, R-50-GN
and Vit-LN have the potential to perform stably under various imbalance ratios (e.g., R-50-GN and
Vit-LN on level 3). ii) For TTT, all R-50-BN/GN and Vit-LN perform relatively stable under label
shifts, except for TTT+Vit-LN has large variances. The adaptation accuracy will also degrade but
not very severe as the imbalance ratio increases. iii) Tent with GN is more sensitive to the extent of
distribution shift than BN. Specifically, for imbalanced ratio 1 (all Qt(y) are uniform) and severity
level 5, Tent+R-50-GN fails and performs poorer than no adapt, while Tent+R-50-BN works well.

(4) Overall Observations. Based on all the above results, we have: i) R-50-GN and Vit-LN are
more stable than R-50-BN when performing TTA under wild test settings (see Figure 1). However,
they do not always succeed and still suffer from several failure cases. ii) R-50-GN is more suitable
for self-supervised TTT than Vit-LN, since TTT+Vit-LN is sensitive to different sample orders and
has large variances over different runs. iii) Vit-LN is more suitable for unsupervised Tent than
R-50-GN, since Tent+R-50-GN is easily to collapse, especially when the distribution shift is severe.

5 COMPARISON WITH STATE-OF-THE-ARTS Table 1: Efficiency compari-
son for processing 50,000 im-
ages (Gaussian noise, level 5
on ImageNet-C) via a single
V100 GPU on ResNet50-GN.

Method GPU time

MEMO (Zhang et al., 2022) 55,980 secs
DDA (Gao et al., 2022) 146,220 secs
TTT (Sun et al., 2020) 3,600 secs
Tent (Wang et al., 2021) 110 secs
EATA (Niu et al., 2022a) 114 secs

SAR (ours) 115 secs

Dataset and Methods. We conduct experiments based on
ImageNet-C (Hendrycks & Dietterich, 2019), a large-scale and
widely used benchmark for out-of-distribution generalization. It
contains 15 types of 4 main categories (noise, blur, weather, digital)
corrupted images and each type has 5 severity levels. We compare
our SAR with the following state-of-the-art methods. DDA (Gao
et al., 2022) performs input adaptation at test time via a diffusion
model. MEMO (Zhang et al., 2022) minimizes marginal entropy
over different augmented copies w.r.t. a given test sample. Tent (Wang et al., 2021) and EATA (Niu
et al., 2022a) are two entropy based online fully test-time adaptation (TTA) methods.

Models and Implementation Details. We conduct experiments on ResNet50-BN/GN and VitBase-
LN that are obtained from torchvision or timm (Wightman, 2019). For our SAR, we use SGD
as the update rule, with a momentum of 0.9, batch size of 64 (except for the experiments of batch
size=1), and learning rate of 0.00025/0.001 for ResNet/Vit models. The threshold E0 in Eqn. (2) is
set to 0.4× ln 1000 by following EATA (Niu et al., 2022a). ρ in Eqn. (3) is set by the default value
0.05 in Foret et al. (2021). For trainable parameters of SAR during TTA, following Tent (Wang
et al., 2021), we adapt the affine parameters of group/layer normalization layers in ResNet50-
GN/VitBase-LN. More details and hyper-parameters of compared methods are put in Appendix C.2.

5.1 ROBUSTNESS TO CORRUPTION UNDER VARIOUS WILD TEST SETTINGS

Results under Online Imbalanced Label Distribution Shifts. As illustrated in Section 4, as the
imbalance ratio qmax/qmin increases, TTA degrades more and more severe. Here, we make com-
parisons under the most difficult case: qmax/qmin=∞, i.e., test samples come in class order. We
evaluate all methods under different corruptions via the same sample sequence for fair comparisons.

From Table 2, our SAR achieves the best results in average of 15 corruption types over ResNet50-
GN and VitBase-LN, suggesting its effectiveness. It is worth noting that Tent works well for many
corruption types on VitBase-LN (e.g., defocus and motion blur) and ResNet50-GN (e.g., pixel),
while consistently fails on ResNet50-BN. This further verifies our observations in Section 4 that
entropy minimization on LN/GN models has the potential to perform well under online imbalanced
label distribution shifts. Meanwhile, Tent also suffers from many failure cases, e.g., VitBase-LN on
shot noise and snow. For these cases, our SAR works well. Moreover, EATA has fewer failure cases
than Tent and achieves higher average accuracy, which indicates that the weight regularization is
somehow able to alleviate the model collapse issue. Nonetheless, the performance of EATA is still
inferior to our SAR, e.g., 49.9% vs. 58.0% (ours) on VitBase-LN regarding average accuracy.
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Table 2: Comparisons with state-of-the-art methods on ImageNet-C (severity level 5) under ONLINE
IMBALANCED LABEL SHIFTS (imbalance ratio =∞) regarding Accuracy (%). “BN”/“GN”/“LN”
is short for Batch/Group/Layer normalization. The bold number indicates the best result.

Noise Blur Weather Digital
Model+Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
ResNet50 (BN) 2.2 2.9 1.8 17.8 9.8 14.5 22.5 16.8 23.4 24.6 59.0 5.5 17.1 20.7 31.6 18.0
•MEMO 7.4 8.6 8.9 19.8 13.2 20.8 27.5 25.6 28.6 32.3 60.8 11.0 23.8 33.2 37.7 24.0
• DDA 32.2 33.1 32.0 14.6 16.4 16.6 24.4 20.0 25.5 17.2 52.2 3.2 35.7 41.8 45.4 27.2
• Tent 1.2 1.4 1.4 1.0 0.9 1.2 2.6 1.7 1.8 3.6 5.0 0.5 2.6 3.2 3.1 2.1
• EATA 0.3 0.3 0.3 0.2 0.2 0.5 0.9 0.8 0.9 1.8 3.5 0.2 0.8 1.2 0.9 0.9

ResNet50 (GN) 17.9 19.9 17.9 19.7 11.3 21.3 24.9 40.4 47.4 33.6 69.2 36.3 18.7 28.4 52.2 30.6
•MEMO 18.4 20.6 18.4 17.1 12.7 21.8 26.9 40.7 46.9 34.8 69.6 36.4 19.2 32.2 53.4 31.3
• DDA 42.5 43.4 42.3 16.5 19.4 21.9 26.1 35.8 40.2 13.7 61.3 25.2 37.3 46.9 54.3 35.1
• Tent 2.6 3.3 2.7 13.9 7.9 19.5 17.0 16.5 21.9 1.8 70.5 42.2 6.6 49.4 53.7 22.0
• EATA 27.0 28.3 28.1 14.9 17.1 24.4 25.3 32.2 32.0 39.8 66.7 33.6 24.5 41.9 38.4 31.6
• SAR (ours) 33.1±1.0 36.5±0.4 35.5±1.1 19.2±0.4 19.5±1.2 33.3±0.5 27.7±4.0 23.9±5.1 45.3±0.4 50.1±1.0 71.9±0.1 46.7±0.2 7.1±1.8 52.1±0.5 56.3±0.1 37.2±0.6

VitBase (LN) 9.4 6.7 8.3 29.1 23.4 34.0 27.0 15.8 26.3 47.4 54.7 43.9 30.5 44.5 47.6 29.9
•MEMO 21.6 17.4 20.6 37.1 29.6 40.6 34.4 25.0 34.8 55.2 65.0 54.9 37.4 55.5 57.7 39.1
• DDA 41.3 41.3 40.6 24.6 27.4 30.7 26.9 18.2 27.7 34.8 50.0 32.3 42.2 52.5 52.7 36.2
• Tent 32.7 1.4 34.6 54.4 52.3 58.2 52.2 7.7 12.0 69.3 76.1 66.1 56.7 69.4 66.4 47.3
• EATA 35.9 34.6 36.7 45.3 47.2 49.3 47.7 56.5 55.4 62.2 72.2 21.7 56.2 64.7 63.7 49.9
• SAR (ours) 46.5±3.0 43.1±7.4 48.9±0.4 55.3±0.1 54.3±0.2 58.9±0.1 54.8±0.2 53.6±7.1 46.2±3.5 69.7±0.3 76.2±0.1 66.2±0.3 60.9±0.3 69.6±0.1 66.6±0.1 58.0±0.5

Table 4: Comparisons with state-of-the-art methods on ImageNet-C (severity level 5) with BATCH
SIZE=1 regarding Accuracy (%). “BN”/“GN”/“LN” is short for Batch/Group/Layer normalization.

Noise Blur Weather Digital
Model+Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
ResNet50 (BN) 2.2 2.9 1.9 17.9 9.8 14.8 22.5 16.9 23.3 24.4 58.9 5.4 17.0 20.6 31.6 18.0
•MEMO 7.5 8.7 8.9 19.7 13.0 20.8 27.6 25.4 28.7 32.2 60.9 11.0 23.8 32.9 37.5 23.9
• DDA 32.1 32.8 31.8 14.7 16.6 16.6 24.2 20.0 25.4 17.2 52.1 3.2 35.7 41.5 45.3 27.3
• Tent 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.1
• EATA 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.2 0.1 0.1

ResNet50 (GN) 18.0 19.8 17.9 19.8 11.4 21.4 24.9 40.4 47.3 33.6 69.3 36.3 18.6 28.4 52.3 30.6
•MEMO 18.5 20.5 18.4 17.1 12.6 21.8 26.9 40.4 47.0 34.4 69.5 36.5 19.2 32.1 53.3 31.2
• DDA 42.4 43.3 42.3 16.6 19.6 21.9 26.0 35.7 40.1 13.7 61.2 25.2 37.5 46.6 54.1 35.1
• Tent 2.5 2.9 2.5 13.5 3.6 18.6 17.6 15.3 23.0 1.4 70.4 42.2 6.2 49.2 53.8 21.5
• EATA 24.8 28.3 25.7 18.1 17.3 28.5 29.3 44.5 44.3 41.6 70.9 44.6 27.0 46.8 55.7 36.5
• SAR (ours) 23.4±0.3 26.6±0.4 23.9±0.0 18.4±0.1 15.4±0.3 28.6±0.3 30.4±0.2 44.9±0.3 44.7±0.2 25.7±0.6 72.3±0.2 44.5±0.1 14.8±2.7 47.0±0.1 56.1±0.0 34.5±0.2

VitBase (LN) 9.5 6.7 8.2 29.0 23.4 33.9 27.1 15.9 26.5 47.2 54.7 44.1 30.5 44.5 47.8 29.9
•MEMO 21.6 17.3 20.6 37.1 29.6 40.4 34.4 24.9 34.7 55.1 64.8 54.9 37.4 55.4 57.6 39.1
• DDA 41.3 41.1 40.7 24.4 27.2 30.6 26.9 18.3 27.5 34.6 50.1 32.4 42.3 52.2 52.6 36.1
• Tent 42.2 1.0 43.3 52.4 48.2 55.5 50.5 16.5 16.9 66.4 74.9 64.7 51.6 67.0 64.3 47.7
• EATA 29.7 25.1 34.6 44.7 39.2 48.3 42.4 37.5 45.9 60.0 65.9 61.2 46.4 58.2 59.6 46.6
• SAR (ours) 40.8±0.4 36.4±0.7 41.5±0.3 53.7±0.2 50.7±0.1 57.5±0.1 52.8±0.3 59.1±0.4 50.7±0.6 68.1±1.4 74.6±0.7 65.7±0.0 57.9±0.1 68.9±0.1 65.9±0.0 56.3±0.1

Table 3: Comparisons with state-
of-the-arts on ImageNet-C under
MIXTURE OF 15 CORRUPTION
TYPES regarding Accuracy (%).

Model + Method Level 5 Level 3

ResNet50 (BN) 18.0 39.7
•MEMO (Zhang et al., 2022) 23.9 46.2
• DDA (Gao et al., 2022) 27.3 44.2
• Tent (Wang et al., 2021) 2.3 41.1
• EATA (Niu et al., 2022a) 26.8 52.6

ResNet50 (GN) 30.6 54.0
•MEMO (Zhang et al., 2022) 31.2 54.5
• DDA (Gao et al., 2022) 35.1 52.3
• Tent (Wang et al., 2021) 13.4 33.1
• EATA (Niu et al., 2022a) 38.1 56.1
• SAR (ours) 38.3±0.1 57.4±0.1

VitBase (LN) 29.9 53.8
•MEMO (Zhang et al., 2022) 39.1 62.1
• DDA (Gao et al., 2022) 36.1 53.2
• Tent (Wang et al., 2021) 16.5 70.2
• EATA (Niu et al., 2022a) 55.7 69.6
• SAR (ours) 57.1±0.1 70.7±0.1

Results under Mixed Distribution Shifts. We evaluate dif-
ferent methods on the mixture of 15 corruption types (total of
15×50,000 images) at different severity levels (5&3). From
Table 3, our SAR performs best consistently regarding accu-
racy, suggesting its effectiveness. Tent fails (occurs collapse)
on ResNet50-GN levels 5&3 and VitBase-LN level 5 and thus
achieves inferior accuracy than no adapt model, showing the
instability of long-range online entropy minimization. Com-
pared with Tent, although MEMO and DDA achieve better re-
sults, they rely on much more computation (inefficient at test
time) as in Table 1, and DDA also needs to alter the train-
ing process (diffusion model training). By comparing Tent
and EATA (both of them are efficient entropy-based), EATA
achieves good results but it needs to pre-collect a set of in-
distribution test samples (2,000 images in EATA) to compute
Fisher importance for regularization and then adapt, which
sometimes may be infeasible in practice. Unlike EATA, our
SAR does not need such samples and obtains better results than EATA.

Results under Batch Size = 1. From Table 4, our SAR achieves the best results in many cases.
It is worth noting that MEMO and DDA are not affected by small batch sizes, mix domain shifts,
or online imbalanced label shifts. They achieve stable/same results under these settings since they
reset (or fix) the model parameters after the adaptation of each sample. However, the computational
complexity of these two methods is much higher than SAR (see Table 1) and only obtain limited
performance gains since they cannot exploit the knowledge from previously seen images. Although
EATA performs better than our SAR on ResNet50-GN, it relies on pre-collecting 2,000 additional
in-distribution samples (while we do not). Moreover, our SAR consistently outperforms EATA in
other cases, see batch size 1 results on VitBase-LN, Tables 2-3, and Tables 8-9 in Appendix.
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Table 5: Effects of components in SAR. We report the Accuracy (%) on ImageNet-C (level 5)
under ONLINE IMBALANCED LABEL SHIFTS (imbalance ratio qmax/qmin = ∞). “reliable” and
“sharpness-aware (sa)” denote Eqn. (2) and Eqn. (3), “recover” denotes the model recovery scheme.

Noise Blur Weather Digital
Model+Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

ResNet50 (GN)+Entropy 3.2 4.1 4.0 17.1 8.5 27.0 24.4 17.9 25.5 2.6 72.1 45.8 8.2 52.2 56.2 24.6
✛ reliable 34.5 36.8 36.2 19.5 3.1 33.6 14.5 20.5 38.3 2.4 71.9 47.0 8.3 52.1 56.4 31.7
✛ reliable+sa 33.8 35.9 36.4 19.2 18.7 33.6 24.5 23.5 45.2 49.3 71.9 46.6 9.2 51.6 56.4 37.0
✛ reliable+sa+recover 33.6 36.1 36.2 19.1 18.6 33.9 24.7 22.5 45.7 49.0 71.9 46.6 9.2 51.5 56.3 37.0

VitBase (LN)+Entropy 21.2 1.9 38.6 54.8 52.7 58.5 54.2 10.1 14.7 69.6 76.3 66.3 59.2 69.7 66.8 47.6
✛ reliable 47.8 35.7 48.4 55.2 54.1 58.6 54.4 13.3 21.4 69.5 76.2 66.1 60.2 69.3 66.7 53.1
✛ reliable+sa 47.9 47.6 48.5 55.4 54.2 58.8 54.6 19.7 22.1 69.4 76.3 66.2 60.9 69.4 66.6 54.5
✛ reliable+sa+recover 47.9 47.6 48.5 55.4 54.2 58.8 54.6 49.1 48.3 69.4 76.3 66.2 60.9 69.4 66.6 58.2

5.2 ABLATE EXPERIMENTS
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Figure 6: Comparison with gradient clipping. Re-
sults on VitBase-LN, ImageNet-C, shot noise, sever-
ity level 5, online imbalanced (ratio =∞) label shift.
Accuracy is calculated over all previous test samples.

Comparison with Gradient Clipping. As
mentioned in Section 3.2, gradient clip-
ping is a straightforward solution to allevi-
ate model collapse. Here, we compare our
SAR with two variants of gradient clip, i.e.,
by value and by norm. From Figure 6, for
both two variants, it is hard to set a proper
threshold δ for clipping, since the gradients
for different models and test data have dif-
ferent scales and thus the δ selection would
be sensitive. We carefully select δ on a specific test set (shot noise level 5). Then, we select a very
small δ to make gradient clip work, i.e., clip by value 0.001 and by norm 0.1. Nonetheless, the per-
formance gain over “no adapt” is very marginal, since the small δ would limit the learning ability of
the model and in this case the clipped gradients may point in a very different direction from the true
gradients. However, a large δ fails to stabilize the adaptation process and the accuracy will degrade
after the model collapses (e.g., clip by value 0.005 and by norm 1.0). In contrast, SAR does not need
to tune such a parameter and achieve significant improvements than gradient clipping.

Effects of Components in SAR. From Table 5, compared with pure entropy minimization, the
reliable entropy in Eqn. (2) clearly improves the adaptation performance, i.e., 47.6% → 53.1% on
VitBase-LN and 24.6% → 31.7% on ResNet50-GN w.r.t. average accuracy. With sharpness-aware
(sa) minimization in Eqn. (3), the accuracy is further improved, e.g., 31.7%→37.0% on ResNet50-
GN w.r.t. average accuracy. On VitBase-LN, the sa module is also effective, and it helps the model
to avoid collapse, e.g., 35.7% → 47.6% on shot noise. With both reliable and sa, our method
performs stably except for very few cases, i.e., VitBase-LN on snow and frost. For this case, our
model recovery scheme takes effects, i.e., 54.5%→ 58.2% on VitBase-LN w.r.t. average accuracy.
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Figure 7: Loss (entropy) surface. Models are
learned on ImageNet-C Gaussian noise, level 5.

Sharpness of Loss Surface. We visualize the
loss surface by adding perturbations to model
weights, as done in Li et al. (2018b). We plot
Figure 7 via the model weights obtained after the
adaptation on the whole test set. By comparing
Figures 7 (a) and (b), the area (the deepest blue)
within the lowest loss contour line of our SAR is
larger than Tent, showing that our solution is flat-
ter and thus is more robust to noisy/large gradients.

6 CONCLUSIONS

In this paper, we seek to stabilize online test-time adaptation (TTA) under wild test settings, i.e.,
mix shifts, small batch, and imbalanced label shifts. To this end, we first analyze and conduct
extensive empirical studies to verify why wild TTA fails. Then, we point out that batch norm acts
as a crucial obstacle to stable TTA. Meanwhile, though batch-agnostic norm (i.e., group and layer
norm) performs more stably under wild settings, they still suffer from many failure cases. To address
these failures, we propose a sharpness-aware and reliable entropy minimization method (SAR) by
suppressing the effect of certain noisy test samples with large gradients. Extensive experimental
results demonstrate the stability and efficiency of our SAR under wild test settings.
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REPRODUCIBILITY STATEMENT

In this work, we implement all methods (all compared methods and our SAR) with different mod-
els (ResNet50-BN, ResNet50-GN, VitBase-LN) on the ImageNet-C/R and VisDA-2021 datasets.
Reproducing all the results in our paper depends on the following three aspects:

1. DATASET. The first paragraph of Section 5 and Appendix C.1 provide the details of the adopted
datasets and the download url.

2. MODELS. All adopted models (with the pre-trained weights) for test-time adaptation are publicly
available. Specifically, ResNet50-BN is from torchvision, ResNet50-GN and VitBase-LN
are from timm repository (Wightman, 2019). Appendix C.2 provides the download url of them.

3. PROTOCOLS OF EACH METHOD. The second paragraph of Section 5 and Appendix C.2 pro-
vides the implementation details of all compared methods and our SAR. We reproduce all com-
pared methods based on the code from their official GitHub, for which the download url is
provided (in Appendix C.2) following each method introduction. The source code of SAR has
been made publicly available.
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A RELATED WORK

We relate our SAR to existing adaptation methods without and with target data, sharpness-aware
optimization, online learning methods, and EATA (Niu et al., 2022a).

Adaptation without Target Data. The problem of conquering distribution shifts has been stud-
ied in a number of works at training time, including domain generalization (Shankar et al., 2018;
Li et al., 2018a; Dou et al., 2019), increasing the training dataset size (Orhan, 2019), various data
augmentation techniques (Lim et al., 2019; Hendrycks et al., 2020; Li et al., 2021; Hendrycks et al.,
2021; Yao et al., 2022), to name just a new. These methods aim to pre-anticipate or simulate the
possible shifts of test data at training time, so that the training distribution can cover the possible
shifts of test data. However, pre-anticipating all possible test shifts at training time may be infea-
sible and these training strategies are often more computationally expensive. Instead of improving
generalization ability at training time, we conquer test shifts by directly learning from test data.

Adaptation with Target Data. We divide the discussion on related methods that exploit target data
into 1) unsupervised domain adaptation (adapt offline) and 2) test-time adaptation (adapt online).

• Unsupervised domain adaptation (UDA). Conventional UDA jointly optimizes on the labeled
source and unlabeled target data to mitigate distribution shifts, such as devising a domain discrimi-
nator to align source and target domains at feature level (Pei et al., 2018; Saito et al., 2018; Zhang
et al., 2020b;a) and aligning the prototypes of source and target domains through a contrastive learn-
ing manner (Lin et al., 2022). Recently, source-free UDA methods have been proposed to resolve
the adaptation problem when source data are absent, such as generative-based methods that generate
source images or prototypes from the model (Li et al., 2020; Kundu et al., 2020; Qiu et al., 2021),
and information maximization (Liang et al., 2020). These methods adapt models on a whole test set,
in which the adaptation is offline and often requires multiple training epochs, and thus are hard to
be deployed on online testing scenarios.

• Test-time adaptation (TTA). According to whether alter training, TTA methods can be mainly
categorized into two groups. i) Test-Time Training (TTT) (Sun et al., 2020) jointly optimizes a source
model with both supervised and self-supervised losses, and then conducts self-supervised learning
at test time. The self-supervised losses can be rotation prediction (Gidaris et al., 2018) in TTT or
contrastive-based objectives (Chen et al., 2020) in TTT++ (Liu et al., 2021) and MT3 (Bartler et al.,
2022), etc. ii) Fully Test-Time Adaptation (Wang et al., 2021; Niu et al., 2022a; Hong et al., 2023)
does not alter the training process and can be applied to any pre-trained model, including adapting
the statistics in batch normalization layers (Schneider et al., 2020; Hu et al., 2021; Khurana et al.,
2021; Lim et al., 2023; Zhao et al., 2023), unsupervised entropy minimization (Wang et al., 2021;
Niu et al., 2022a; Zhang et al., 2022), prediction consistency maximization (Zhang et al., 2022;
Wang et al., 2022; Chen et al., 2022a), top-k classification boosting (Niu et al., 2022b), etc.

Though effective at handling test shifts, prior TTA methods are shown to be unstable in the online
adaptation process and sensitive to when test data are insufficient (small batch sizes), from mixed
domains, have imbalanced and online shifted label distribution (see Figure 1). Here, it is worth not-
ing that methods like MEMO (Zhang et al., 2022) and DDA (Gao et al., 2022) are not affected under
the above 3 scenarios, since MEMO resets the model parameters after each sample adaptation and
DDA performs input adaptation via diffusion (in which the model weights are frozen during test-
ing). However, these methods can not exploit the knowledge learned from previously seen samples
and thus obtain limited performance gains. Moreover, the heavy data augmentations and diffusion
in MEMO and DDA are computationally expensive and inefficient at test time (see Table 6). In
this work, we analyze why online TTA may fail under the above practical test settings and propose
associated solutions to make TTA stable under various wild test settings.

Sharpness-aware Minimization (SAM). SAM (Foret et al., 2021) optimizes both a supervised ob-
jective (e.g., cross-entropy) and the sharpness of loss surface, aiming to find a flat minimum that has
good generalization ability (Hochreiter & Schmidhuber, 1997). SAM and its variants (Kwon et al.,
2021; Zheng et al., 2021; Du et al., 2022; Chen et al., 2022b) have shown outstanding performance
on several deep learning benchmarks. In this work, when we analyze the failure reasons of test-time
entropy minimization, we find that some noisy samples that produce gradients with large norms
harm the adaptation and thus lead to model collapse. To alleviate this, we propose to minimize the
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sharpness of the test-time entropy loss surface so that the online model update is robust to those
noisy/large gradients.

Online Learning (OL). OL (Hoi et al., 2021; Chowdhury & Gopalan, 2017; Zhao et al., 2011)
conducts model learning from a sequence of data samples one by one at a time, which is com-
mon in many real-world applications (e.g., social web recommendation). According to the super-
vision type, OL can be categorized into three groups: i) Supervised methods (Rakhlin et al., 2010;
Shalev-Shwartz et al., 2012) obtain supervision at the end of each online learning iteration, ii) Semi-
supervised methods (Zhang & Hoi, 2019) can obtain supervision from only partial samples, e.g.,
online active learning (Zhao & Hoi, 2013; Zhang et al., 2019) selects informative samples to query
the ground-truth label for the model update, iii) Unsupervised methods (Bhatnagar et al., 2014) can
not obtain any supervision during the whole online learning process. In this sense, test-time adapta-
tion (TTA) (Sun et al., 2020; Wang et al., 2021) online updates models with only unlabeled test data
and thus falls into the third category. However, unlike unsupervised OL that mainly aims to learn
representations or clusters (Ren et al., 2021), TTA seeks to boost the performance of any pre-trained
model on out-of-distribution test samples.

Comparison with EATA (Niu et al., 2022a). Although both EATA and our SAR include a step
to remove samples via entropy, their motivations behind this step are different. EATA seeks to
improve the adaptation efficiency via sample entropy selection. In our SAR, we discover that some
noisy gradients with large norms may hurt the adaptation and thus result in model collapse under
wild test settings. To remove these gradients, we exploit an alternative metric (i.e., entropy), which
helps to remove partial noisy gradients with large norms. However, this is still insufficient for
achieving stable TTA (see ablation results in Table 5). Thus, we further introduce the sharpness-
aware optimization and a model recovery scheme. With these three strategies, our SAR performs
stably under wild test settings.
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B PSEUDO CODE OF SAR

In this appendix, we provide the pseudo-code of our SAR method. From Algorithm 1, for each test
sample xj , we first apply the reliable sample filtering scheme (refer to lines 3-6) to it to determine
whether it will be used to update the model. If xj is reliable, we will optimize the model via the
sharpness-aware entropy loss of xj (refer to lines 7-10). Specifically, we first calculate the optimal
weight perturbation ϵ̂(Θ̃) based on the gradient ∇Θ̃E(xj ; Θ), and then update the model with ap-
proximate gradients g = ∇Θ̃E(xj ; Θ)|Θ+ϵ̂(Θ̃). Lastly, we exploit a recovery scheme to enable the
model to work well even under a few extremely hard cases (refer to lines 11-13). Specifically, when
the moving average value em of entropy loss is smaller than e0 (indicating that the model occurs to
collapse), we will recover the model parameters Θ̃ to its original/initial value.

Algorithm 1: Sharpness-Aware and Reliable Test-Time Entropy Minimization (SAR)

Input: Test samples Dtest = {xj}Mj=1, model fΘ(·) with trainable parameters Θ̃ ⊂ Θ, step size η > 0,
neighborhood size ρ > 0, E0 > 0 in Eqn. (2), e0 > 0 for model recovery.

Output: Predictions {ŷj}Mj=1.
1 Initialize Θ̃0 = Θ̃, moving average of entropy em = 0;
2 for xj ∈ Dtest do
3 Compute entropy Ej=E(xj ; Θ) and predict ŷj=fΘ(xj);
4 if Ej > E0 then
5 continue ; // reliable entropy minimization (Eqn. 2)
6 end
7 Compute gradient∇Θ̃E(xj ; Θ);
8 Compute ϵ̂(Θ̃) per Eqn. (4);
9 Compute gradient approximation: g = ∇Θ̃E(xj ; Θ)|Θ+ϵ̂(Θ̃) ;

10 Update Θ̃← Θ̃− ηg ; // sharpness-aware minimization (Eqn. 3)

11 em=0.9×em+0.1×E(xj ; Θ+ϵ̂(Θ̃)) if em ̸=0 else E(xj ; Θ+ϵ̂(Θ̃)) ; // moving average
12 if em < e0 then
13 Recover model weights: Θ̃← Θ̃0 ; // model recovery
14 end
15 end
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C MORE IMPLEMENTATION DETAILS

C.1 MORE DETAILS ON DATASET

In this paper, we mainly evaluate the out-of-distribution generalization ability of all methods on
a large-scale and widely used benchmark, namely ImageNet-C1 (Hendrycks & Dietterich, 2019).
ImageNet-C is constructed by corrupting the original ImageNet (Deng et al., 2009) test set. The
corruption (as shown in Figure 8) consists of 15 different types, i.e., Gaussian noise, shot noise,
impulse noise, defocus blur, glass blue, motion blur, zoom blur, snow, frost, fog, brightness, con-
trast, elastic transformation, pixelation, and JPEG compression, in which each corruption type has 5
different severity levels and the larger severity level means more severe distribution shift. Then, we
further conduct experiments on ImageNet-R (Hendrycks et al., 2021) and VisDA-2021 (Bashkirova
et al., 2022) to verify the effectiveness of our method. ImageNet-R contains 30,000 images with
various artistic renditions of 200 ImageNet classes, which are primarily collected from Flickr and
filtered by Amazon MTurk annotators. VisDA-2021 collects images from ImageNet-O/R/C and Ob-
jectNet (Barbu et al., 2019). The domain shifts in VisDA-2021 include the changes in artistic visual
styles, textures, viewpoints and corruptions.
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Gaussian Noise Shot Noise Impulse Noise Defocus Blur Frosted Glass Blur

Motion Blur Zoom Blur Snow Frost Fog

Brightness Contrast Elastic Pixelate JPEG

Figure 1: Our IMAGENET-C dataset consists of 15 types of algorithmically generated corruptions
from noise, blur, weather, and digital categories. Each type of corruption has five levels of severity,
resulting in 75 distinct corruptions. See different severity levels in Appendix B.

face of minor input changes. Now in order to approximate C, E and these robustness measures, we
designed a set of corruptions and perturbations which are frequently encountered in natural images.
We will refer to these as “common” corruptions and perturbations. These common corruptions and
perturbations are available in the form of IMAGENET-C and IMAGENET-P.

4 THE IMAGENET-C AND IMAGENET-P ROBUSTNESS BENCHMARKS

4.1 THE DATA OF IMAGENET-C AND IMAGENET-P

IMAGENET-C Design. The IMAGENET-C benchmark consists of 15 diverse corruption types
applied to validation images of ImageNet. The corruptions are drawn from four main categories—
noise, blur, weather, and digital—as shown in Figure 1. Research that improves performance on this
benchmark should indicate general robustness gains, as the corruptions are diverse and numerous.
Each corruption type has five levels of severity since corruptions can manifest themselves at varying
intensities. Appendix A gives an example of the five different severity levels for impulse noise.
Real-world corruptions also have variation even at a fixed intensity. To simulate these, we introduce
variation for each corruption when possible. For example, each fog cloud is unique to each image.
These algorithmically generated corruptions are applied to the ImageNet (Deng et al., 2009) validation
images to produce our corruption robustness dataset IMAGENET-C. The dataset can be downloaded
or re-created by visiting https://github.com/hendrycks/robustness. IMAGENET-C
images are saved as lightly compressed JPEGs; this implies an image corrupted by Gaussian noise is
also slightly corrupted by JPEG compression. Our benchmark tests networks with IMAGENET-C
images, but networks should not be trained on these images. Networks should be trained on datasets
such as ImageNet and not be trained on IMAGENET-C corruptions. To enable further experimentation,
we designed an extra corruption type for each corruption category (Appendix B), and we provide
CIFAR-10-C, TINY IMAGENET-C, IMAGENET 64× 64-C, and Inception-sized editions. Overall,
the IMAGENET-C dataset consists of 75 corruptions, all applied to ImageNet validation images for
testing a pre-existing network.

3

Figure 8: Visualizations of different corruption types in ImageNet corruption benchmark, which are
taken from the original paper of ImageNet-C (Hendrycks & Dietterich, 2019).

C.2 MORE EXPERIMENTAL PROTOCOLS

All pre-trained models involved in our paper for test-time adaptation are publicly available, includ-
ing ResNet50-BN2 obtained from torchvision library, ResNet-50-GN3 and VitBase-LN4 and
ConvNeXt-LN5 obtained from timm repository (Wightman, 2019). We summarize the detailed
characteristics of all involved methods in Table 6 and introduce their implementation details in the
following.

SAR (Ours). We use SGD as the update rule, with a momentum of 0.9, batch size of 64 (except
for the experiments of batch size = 1), and learning rate of 0.00025/0.001 for ResNet/Vit models.
The learning rate for batch size = 1 is set to (0.00025/16) for ResNet models and (0.001/32) for Vit
models. The threshold E0 in Eqn. (2) is set to 0.4× ln 1000 by following EATA (Niu et al., 2022a).
ρ in Eqn. (3) is set by the default value 0.05 in Foret et al. (2021). For model recovery, we record the

1https://zenodo.org/record/2235448#.YzQpq-xBxcA
2https://download.pytorch.org/models/resnet50-19c8e357.pth
3https://github.com/rwightman/pytorch-image-models/releases/download/

v0.1-rsb-weights/resnet50_gn_a1h2-8fe6c4d0.pth
4https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_

0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.
01-res_224.npz

5https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth
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Table 6: Characteristics of state-of-the-art methods. We evaluate the efficiency of different methods
with ResNet-50 (group norm) on ImageNet-C (Gaussian noise, severity level 5), which consists of
totally 50,000 images. The real run time is tested via a single V100 GPU. DDA (Gao et al., 2022)
pre-trains an additional diffusion model and then perform input adaptation/diffusion at test time.
Method Need source data? Online update? #Forward #Backward Other computation GPU time (50,000 images)

MEMO (Zhang et al., 2022) % % 50,000×65 50,000×64 AugMix (Hendrycks et al., 2020) 55,980 seconds
DDA (Gao et al., 2022) ! % 50,000×2 0 50,000 diffusion 146,220 seconds
TTT (Sun et al., 2020) ! ! 50,000×21 50,000×20 rotation augmentation 3,600 seconds
Tent (Wang et al., 2021) % ! 50,000 50,000 n/a 110 seconds
EATA (Niu et al., 2022a) ! ! 50,000 26,196 regularizer 114 seconds

SAR (ours) % ! 50,000 + 12,710 12,710×2 Eqn. (4) 115 seconds

entropy loss values with a moving average factor of 0.9 for em, and the reset threshold e0 is set to 0.2.
For learnable parameters, we only update affine parameters in normalization layers by following
Tent (Wang et al., 2021). However, since the top/deep layers are more sensitive and more important
to the original model than shallow layers as mentioned in (Mummadi et al., 2021; Choi et al., 2022),
we freeze the top layers and update the affine parameters of layer or group normalization in the
remaining shallow layers. Specifically, for ResNet50-GN that has 4 layer groups (layer1, 2, 3, 4),
we freeze the layer4. For ViTBase-LN that has 11 blocks groups (blocks1-11), we freeze blocks9,
blocks10, blocks11.

TTT6 (Sun et al., 2020). For fair comparisons, we seek to compare all methods based on the same
model weights. However, TTT alters the model training process and requires the model contains
a self-supervised rotation prediction branch for test-time training. Therefore, we modify TTT so
that it can be applied to any pre-trained model. Specifically, given a pre-trained model, we add
a new branch (random initialized) from the end of a middle layer (2nd layer group of ResNet-
50-GN and 6th blocks group of VitBase-LN) for the rotation prediction task. We first freeze all
original parameters of the pre-trained model and train the newly added branch for 10 epochs on the
original ImageNet training set. Here, we apply an SGD optimizer, with a momentum of 0.9, an
initial learning rate of 0.1/0.005 for ResNet50-GN/VitBase-LN, and decrease it at epochs 4 and 7
by decreasing factor 0.1. Then, we take the newly obtained model (with two branches) as the base
model to perform test-time training. During the test-time training phase, we use SGD as the update
rule with a learning rate of 0.001 for ResNet0-GN (following TTT) and 0.0001 for VitBase-LN, and
the data augmentation size is set to 20 (following Niu et al. (2022a)).

Tent7 (Wang et al., 2021). We follow all hyper-parameters that are set in Tent unless it does not
provide. Specifically, we use SGD as the update rule, with a momentum of 0.9, batch size of 64
(except for the experiments of batch size = 1 and effects of small test batch sizes (in Section 4)),
and learning rate of 0.00025/0.001 for ResNet/Vit models. The learning rate for batch size = 1 is set
to (0.00025/32) for ResNet models and (0.001/64) for Vit models. The trainable parameters are all
affine parameters of batch normalization layers.

EATA8 (Niu et al., 2022a). We follow all hyper-parameters that are set in EATA unless it does
not provide. Specifically, the entropy constant E0 (for reliable sample identification) is set to 0.1×
ln 1000. The ϵ for redundant sample identification is set to 0.05. The trade-off parameter β for
entropy loss and regularization loss is set to 2,000. The number of pre-collected in-distribution test
samples for Fisher importance calculation is 2,000. The update rule is SGD, with a momentum of
0.9, batch size of 64 (except for the experiments of batch size = 1 and effects of small test batch
sizes (in Section 4)), and learning rate of 0.00025/0.001 for ResNet/Vit models. The learning rate
for batch size = 1 is set to (0.00025/32) for ResNet models and (0.001/64) for Vit models. The
trainable parameters are all affine parameters of batch normalization layers.

MEMO9 (Zhang et al., 2022). We follow all hyper-parameters that are set in MEMO. Specifically,
we use the AugMix (Hendrycks et al., 2020) as a set of data augmentations and the augmentation
size is set to 64. For Vit models, the optimizer is AdamW (Loshchilov & Hutter, 2018), with learning

6https://github.com/yueatsprograms/ttt_imagenet_release
7https://github.com/DequanWang/tent
8https://github.com/mr-eggplant/EATA
9https://github.com/zhangmarvin/memo
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rate 0.00001 and weight decay 0.01. For ResNet models, the optimizer is SGD, with learning rate
0.00025 and no weight decay. The trainable parameters are the entire model.

DDA10 (Gao et al., 2022). We reproduce DDA according to its official GitHub repository and use
the default hyper-parameters.

More Details on Experiments in Section 4: Normalization Layer Effects in TTA. In Section 4,
we investigate the effects of TTT and Tent with models that have different norm layers under {small
test batch sizes, mixed distribution shifts, online imbalanced label distribution shifts}. For each
experiment, we only consider one of the three above test settings. To be specific, for experiments re-
garding batch size effects (Section 4 (1)), we only tune the batch size and the test set does not contain
multiple types of distribution shifts and its label distribution is always uniform. For experiments of
mixed domain shifts (Section 4 (2)), the test samples come from the mixture of 15 corruption types,
while the batch size is 64 for Tent and 1 for TTT, and the label distribution of test data is always
uniform. For experiments of online label shifts (Section 4 (3)), the label distribution of test data is
online shifted and imbalanced, while the BS is 64 for Tent and 1 for TTT, and test data only consist
of one corruption type. Moreover, it is worth noting that we re-scale the learning rate for entropy
minimization (Tent) according to the batch size, since entropy minimization is sensitive to the learn-
ing rate and a fixed learning rate often fails to work well. Specifically, the learning rate is re-scaled
as (0.00025/32) × BS IF BS < 32 ELSE 0.00025 for ResNet models and (0.001/64) × BS for
Vit models. Compared with Tent, the single sample adaptation method TTT is not very sensitive to
the learning rate, and thus we set the same learning rate for various batch sizes. We also provide the
results of TTT under different batch sizes with dynamic re-scaled learning rates in Table 7.

Table 7: Batch size (BS) effects in TTT (Sun et al., 2020) with different models (different norm
layers). The learning rate is dynamically re-scaled by 0.001×BS. We report the accuracy (%) on
ImageNet-C with Gaussian noise and severity level 5.

Model BS=1 BS=2 BS=4 BS=8 BS=16

ResNet50-BN 21.2 23.4 23.4 24.7 24.6
ResNet50-GN 40.9 40.5 40.8 41.1 40.7

10https://github.com/shiyegao/DDA
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D ADDITIONAL RESULTS ON IMAGENET-C OF SEVERITY LEVEL 3

D.1 COMPARISONS WITH STATE-OF-THE-ARTS UNDER ONLINE IMBALANCED LABEL SHIFT

We provide more results regarding online imbalanced label distribution shift (imbalance ratio =∞)
of all compared methods in Table 8. The results are consistent with that of the main paper (severity
level 5), and our SAR performs best in the average of 15 different corruption types. It is worth
noting that DDA achieves competitive results under noise corruptions while performing worse for
other corruption types. The reason is that the diffusion model used in DDA for input adaptation
is trained via noise diffusion, and thus its generalization ability to diffuse other corruptions is still
limited.

Table 8: Comparisons with state-of-the-art methods on ImageNet-C of severity level 3 under ON-
LINE IMBALANCED LABEL DISTRIBUTION SHIFTS (imbalance ratio qmax/qmin =∞) regarding
Accuracy (%). “BN”/“GN”/“LN” is short for Batch/Group/Layer normalization.

Noise Blur Weather Digital
Model+Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
ResNet50 (BN) 27.7 25.2 25.1 37.8 16.7 37.8 35.3 35.2 32.1 46.7 69.5 46.2 55.4 46.2 59.4 39.8
•MEMO 37.6 34.5 36.7 41.4 23.4 44.4 40.9 44.6 37.3 52.4 70.5 56.3 58.7 55.2 60.9 46.3
• DDA 49.9 50.0 49.2 33.2 31.9 38.0 36.7 35.1 34.1 35.01 64.9 33.7 59.3 53.9 59.0 44.3
• Tent 3.4 3.2 3.2 2.3 2.0 2.4 3.4 2.4 2.4 4.6 5.4 3.0 4.8 4.6 4.5 3.4
• EATA 1.3 0.9 1.1 0.6 0.6 1.2 1.4 1.3 1.3 1.9 4.1 1.6 2.7 2.4 3.1 1.7

ResNet50 (GN) 54.5 52.9 53.1 44.4 21.2 49.8 39.3 54.9 54.1 55.8 75.3 69.7 59.6 59.7 66.4 54.1
•MEMO 55.9 54.3 54.1 40.1 23.1 49.5 41.4 54.8 54.1 57.6 75.7 70.2 60.2 61.5 66.7 54.6
• DDA 61.0 61.0 60.5 39.3 37.3 46.4 39.7 47.7 48.1 29.9 69.9 57.8 62.8 60.1 63.8 52.4
• Tent 59.1 58.6 58.3 39.0 27.9 54.7 41.1 51.3 41.4 62.0 75.2 70.1 62.3 63.7 66.4 55.4
• EATA 52.3 52.9 51.7 35.7 30.1 46.4 39.6 43.8 39.8 55.7 72.4 66.6 54.7 56.0 56.2 50.3
• SAR (ours) 60.8±0.1 60.5±0.3 60.2±0.2 47.9±0.5 36.7±0.7 58.2±0.2 49.7±0.5 57.9±0.3 53.6±0.0 65.0±0.1 76.4±0.2 71.0±0.0 67.0±0.2 65.8±0.1 67.6±0.0 59.9±0.1

VitBase (LN) 51.5 46.8 50.4 48.7 37.1 54.7 41.6 35.1 33.3 68.0 69.3 74.9 65.9 66.0 63.6 53.8
•MEMO 62.1 57.9 61.5 57.2 45.6 62.0 49.9 46.5 43.1 74.1 75.8 79.7 72.6 72.3 70.6 62.1
• DDA 59.7 58.2 59.4 43.5 43.3 50.5 41.0 34.3 34.4 55.4 65.0 64.2 64.1 63.8 62.9 53.3
• Tent 68.7 68.0 68.1 68.2 63.8 70.9 63.8 67.6 41.9 76.3 78.8 79.5 75.9 76.7 73.7 69.5
• EATA 65.3 62.6 63.6 63.0 57.1 66.3 59.3 64.5 61.0 73.3 76.9 75.9 74.2 74.8 73.1 67.4
• SAR (ours) 68.8±0.1 68.2±0.1 68.4±0.2 68.3±0.2 64.7±0.0 71.0±0.2 64.2±0.3 68.1±0.1 66.0±0.1 76.4±0.1 79.0±0.1 79.6±0.1 76.2±0.3 77.1±0.1 74.1±0.2 71.3±0.1

D.2 COMPARISONS WITH STATE-OF-THE-ARTS UNDER BATCH SIZE OF 1

We provide more results regarding batch size = 1 of all compared methods in Table 9. The results are
consistent with that of the main paper (severity level 5), and our SAR performs best in the average
of 15 different corruption types.

Table 9: Comparisons with state-of-the-art methods on ImageNet-C of severity level 3 under BATCH
SIZE=1 regarding Accuracy (%). “BN”/“GN”/“LN” is short for Batch/Group/Layer normalization.

Noise Blur Weather Digital
Model+Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
ResNet50 (BN) 27.6 25.0 25.1 38.0 16.9 37.7 35.2 35.2 32.1 46.6 69.6 46.0 55.6 46.2 59.3 39.7
•MEMO 37.5 34.3 36.6 41.2 23.3 44.2 41.0 44.5 37.4 52.3 70.5 56.0 58.7 55.0 60.8 46.2
• DDA 49.8 49.9 49.2 33.2 32.0 37.9 36.6 35.2 34.2 34.9 64.9 33.5 59.3 53.9 59.0 44.2
• Tent 0.1 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
• EATA 0.2 0.2 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

ResNet50 (GN) 54.5 52.8 53.1 44.3 21.2 49.7 39.2 54.8 54.0 55.8 75.4 69.8 59.6 59.7 66.3 54.0
•MEMO 55.7 54.2 53.9 40.0 22.8 49.2 41.2 54.8 54.1 57.6 75.5 69.9 60.0 61.3 66.6 54.5
• DDA 61.0 60.9 60.4 39.2 37.2 46.4 39.7 47.7 48.0 29.8 70.0 58.0 62.7 60.2 63.8 52.3
• Tent 58.8 58.5 58.7 38.2 26.8 54.9 42.6 51.6 38.8 61.9 75.3 70.0 62.3 63.6 66.3 55.2
• EATA 59.2 58.7 58.8 45.7 32.6 55.5 45.9 56.4 52.7 63.6 75.9 71.1 64.7 64.5 67.8 58.2
• SAR (ours) 60.3±0.1 59.6±0.1 59.5±0.1 46.6±1.1 33.0±0.5 57.5±0.1 47.8±0.1 57.8±0.2 52.8±0.1 65.1±0.1 76.7±0.1 71.4±0.1 67.3±0.2 66.0±0.1 67.8±0.0 59.3±0.1

VitBase (LN) 51.6 46.9 50.5 48.7 37.2 54.7 41.6 35.1 33.5 67.8 69.3 74.8 65.8 66.0 63.7 53.8
•MEMO 61.9 57.7 61.4 57.0 45.4 61.8 49.8 46.6 43.1 73.9 75.7 79.6 72.6 72.1 70.5 61.9
• DDA 59.8 58.2 59.5 43.4 43.2 50.4 40.9 34.2 34.3 55.2 64.9 64.0 64.2 63.7 62.8 53.2
• Tent 67.1 66.2 66.3 66.3 60.9 69.1 61.4 65.2 60.4 75.2 78.1 78.8 74.9 75.8 72.4 69.2
• EATA 60.7 58.5 61.6 60.1 51.8 64.2 54.8 53.3 52.6 72.5 73.6 77.9 71.3 71.3 69.7 63.6
• SAR (ours) 68.5±0.1 67.8±0.1 68.0±0.1 67.8±0.2 63.1±0.0 70.7±0.1 63.5±0.1 66.9±0.2 62.8±2.1 75.8±0.5 77.7±0.8 78.4±0.4 74.7±1.5 75.7±0.5 72.7±1.1 70.3±0.3
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E ADDITIONAL RESULTS ON IMAGENET-R AND VISDA-2021

We further conduct experiments on ImageNet-R under two wild test settings: online imbalanced
label distribution shifts (in Table 10) and batch size = 1 (in Table 11). The overall results are
consistent with that on ImageNet-C: 1) ResNet50-GN and VitBase-LN perform more stable than
ResNet50-BN; 2) Compared with Tent and EATA, SAR achieves the best performance on ResNet50-
GN and VitBase-LN.

Table 10: Comparison in terms of accuracy (%)
under the wild setting online imbalanced label
distribution shifts on ImageNet-R.

Method ResNet50-BN ResNet50-GN VitBase-LN

No Adapt. 36.2 40.8 43.1
Tent 6.6 41.7 45.2
EATA 5.8 40.9 47.5
SAR (ours) - 42.9 52.0

Table 11: Comparison in terms of accuracy (%)
under the wild setting single sample adaptation
(batch size = 1) on ImageNet-R.

Method ResNet50-BN ResNet50-GN VitBase-LN

No Adapt. 36.2 40.8 43.1
Tent 0.6 42.2 40.5
EATA 0.6 42.3 52.5
SAR (ours) - 43.9 53.1

We also compare our method with online TTA methods (Tent and EATA) on VisDA-2021. Results
in Table 12 are consistent with that on ImageNet-C and ImageNet-R. Specifically, Tent and EATA
fail with the BN model (ResNet50-BN) while performing stable with the GN/LN model (ResNet50-
GN/VitBase-LN) under online imbalanced label shifts. Besides, our SAR further improves the adap-
tation performance of Tent and EATA on ResNet50-GN/VitBase-LN.

Table 12: Classification Accuracy (%) on VisDA-2021 under online imbalanced label distribu-
tion shifts and mixed domain shifts.

Model No adapt Tent EATA SAR (ours)

ResNet50-BN 36.0 9.0 7.4 –
ResNet50-GN 43.7 42.8 40.9 44.1
VitBase-LN 44.3 49.1 49.0 52.0
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F ADDITIONAL ABLATE RESULTS

F.1 EFFECTS OF COMPONENTS IN SAR

We further ablate the effects of components in our SAR in Figure 9 by plotting the changes of
gradients norms of our methods with different components. From the results, both the reliable
(Eqn. 2) and sharpness-aware (sa) (Eqn. 3) modules together ensure the model’s gradients keep in
a normal range during the whole online adaptation process, which is consistent with our previous
results in Section 5.2.
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Figure 9: The evolution of gradients norm during online test-time adaptation. Results on VitBase,
ImageNet-C, shot noise, severity level 5, online imbalance label shift (imbalance ratio =∞). “reli-
able” and “sharpness-aware (sa)” are short for Eqn. (2) and Eqn. (3), respectively.

We also conduct more ablation experiments under the wild test settings of “batch size (BS)=1”
in Table 13 and “mix domain shifts” in Table 14. The results are generally consistent with that
in Table 5. Both the reliable entropy and sharpness-aware optimization work together to stabilize
online TTA. It is worth noting that only in VitBase-LN under BS=1 the model recovery scheme is
activated and improves the average accuracy from 55.7% to 56.4%.

Table 13: Effects of components in SAR. We report the Accuracy (%) on ImageNet-C (level 5) un-
der BATCH SIZE=1. “reliable” and “sharpness-aware (sa)” denote Eqn. (2) and Eqn. (3), “recover”
denotes the model recovery scheme.

Noise Blur Weather Digital
Model+Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

ResNet50 (GN)+Entropy 3.4 4.5 4.0 16.7 5.9 27.0 29.7 16.3 26.6 2.1 72.1 46.4 7.5 52.5 56.2 24.7
✛ reliable 22.8 25.5 23.0 18.4 14.8 27.0 28.6 40.0 43.3 18.4 71.5 43.1 15.2 45.6 55.4 32.8
✛ reliable+sa 23.8 26.4 24.0 18.6 15.4 28.3 30.5 44.8 44.8 26.7 72.4 44.5 12.2 46.9 65.1 34.4
✛ reliable+sa+recover 23.8 26.4 23.9 18.5 15.4 28.3 30.6 44.6 44.9 24.7 72.4 44.4 12.3 47.0 56.1 34.2

VitBase (LN)+Entropy 42.9 1.4 43.9 52.6 48.8 55.8 51.4 22.2 20.1 67.0 75.1 64.7 53.7 67.2 64.5 48.8
✛ reliable 34.8 4.2 35.5 50.5 45.9 54.0 48.6 52.5 47.8 65.5 74.5 63.4 51.4 65.6 63.0 50.5
✛ reliable+sa 40.4 37.3 41.2 53.6 50.6 57.3 53.0 58.7 40.9 68.8 75.9 65.7 57.9 69.0 66.0 55.7
✛ reliable+sa+recover 40.4 37.3 41.2 53.6 50.6 57.3 53.0 58.7 50.7 68.8 75.4 65.7 57.9 69.0 66.0 56.4

Table 14: Effects of components in SAR. We report the Accuracy (%) under MIXED DOMAIN
SHIFTS, i.e., mixture of 15 corruption types of ImageNet-C with severity level 5. “reliable” and
“sharpness-aware (sa)” denote Eqn. (2) and Eqn. (3), “recover” denotes the model recovery scheme.

Model + Method Accuracy (%)

ResNet50 (GN)+Entropy 33.5
✛ reliable 38.1
✛ reliable+sa 38.2
✛ reliable+sa+recover 38.2

ResNet50 (GN)+Entropy 18.5
✛ reliable 55.2
✛ reliable+sa 57.2
✛ reliable+sa+recover 57.2
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F.2 VISUALIZATION OF LOSS SURFACE LEARNED BY SAR

In Figure 7 in the main paper, we have visualized the loss surface of Tent and our SAR on VitBase-
LN. In this section, we further provide visualizations of ResNet50-GN. We select a checkpoint at
batch 120 to plot the loss surface for Tent, since after batch 120 this model starts to collapse. In
this case, the loss (entropy) is hard to degrade and cannot find a proper minimum. For our SAR,
the model weights for plotting are obtained after the adaptation on the whole test set. By comparing
Figures 10 (a)-(b), SAR helps to stabilize the entropy minimization process and find proper minima.
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Figure 10: Visualization of loss (entropy) surface. Models are learned on ImageNet-C of Gaussian
noise with severity level 5.

F.3 SENSITIVITY OF ρ IN SAR

The hyper-parameter ρ (in Eqn. (3)) in sharpness-aware optimization is not hard to tune in our online
test-time adaptation. Following Foret et al. (2021), we set ρ = 0.05 in all experiments, and it works
well with different model architectures (ResNet50-BN, ResNet50-GN, VitBase-LN) on different
datasets (ImageNet-C, ImageNet-R). Here, we also conduct a sensitivity analysis of ρ in Table 15,
in which SAR works well under the range [0.03, 0.1].

Table 15: Sensitivity of ρ in SAR. We report Accuracy (%) on ImageNet-C (shot noise, severity
level 5) under online imbalanced label distribution shifts, where the imbalance ratio is∞.

Method No adapt Tent SAR (ρ=0.01) SAR (ρ=0.03) SAR (ρ=0.05) SAR (ρ=0.07) SAR (ρ=0.1)

Accuracy (%) 6.7 1.4 40.3 47.7 47.6 47.2 47.2
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G ADDITIONAL DISCUSSIONS

G.1 MORE DISCUSSIONS ON MODEL COLLAPSE

As we mentioned in Section 3.1, models online optimized by entropy (Wang et al., 2021; Niu et al.,
2022a) under wild test scenarios are easy to collapse, i.e., predict all samples to a single class inde-
pendent of the inputs. To alleviate this, prior methods (Liang et al., 2020; Mummadi et al., 2021)
exploit diversity regularization to force the output distribution of samples to be uniform. However,
this assumption is unreasonable at test time such as when test data are imbalanced during a period
(as in Figure 1 (c)) and this method also relies on a batch of samples (in contrast to Figure 1 (b)).
In this sense, this strategy is infeasible for our problem. In our paper, we resolve the collapse is-
sue for test-time adaptation from an optimization perspective to make the online adaptation process
stabilized.

G.2 EFFECTS OF LARGE BATCH SIZES IN BN MODELS UNDER MIX DOMAIN SHIFTS

In Section 3.1, we mentioned that a standard batch size (e.g., 64 on ImageNet) works well when
there is only one type of distribution shift. However, when test data contains multiple shifts, this
batch size fails to calculate an accurate mean and variance estimation in batch normalization lay-
ers. Here, we investigate the effects of super large batch sizes in this setting. From Table 16, the
adapted performance increases as the batch size increases, indicating that a larger batch size helps
to estimate statistics more accurately. It is worth noting that the performance on severity level 3
degrades when BS is larger than 1024. This is because we fix the learning rate for various batch
sizes and in this sense, BS=1024 may lead to insufficient model updates. Moreover, although en-
larging batch sizes is able to boost the performance, the adapt performance is still inferior to the
average accuracy of adapting on each corruption type separately (i.e., average adapt). This further
emphasizes the necessity of exploiting models with group or layer norm layers to perform test-time
entropy minimization.

Table 16: Effects of large batch sizes (BS) in Tent (Wang et al., 2021) with ResNet-50-BN under
MIXTURE OF 15 DIFFERENT CORRUPTION TYPES on ImageNet-C. We report accuracy (%).

avg. adapt mix adapt
Severity Base BS=64 BS=32 BS=64 BS=128 BS=256 BS=512 BS=1,024

Level = 5 18.0 42.6 0.9 2.3 4.0 8.3 12.4 16.4
Level = 3 39.8 59.0 20.1 40.7 46.7 49.1 49.0 47.8

G.3 PERFORMANCE OF TENT WITH CONVNEXT-LN

For mainstream neural network models, the normalization layers are often coupled with network
architecture. Specifically, group norm (GN) and batch norm (BN) are often combined with conven-
tional networks, while layer norm (LN) is more suitable for transformer networks. Therefore, we in-
vestigate the layer normalization effects in TTA in Section 4 through VitBase-LN. Here, we conduct
more experiments to compare the performance of online entropy minimization (Wang et al., 2021) on
ResNet50-BN and ConvNeXt-LN (Liu et al., 2022). ConvNeXt is a convolutional network equipped
with LN. The authors conduct significant modifications over ResNet to make this LN-based convo-
lutional network work well, such as modifying the architecture (ResNet block to ConvNeXt block,
activation functions, etc.), various training strategies (stochastic depth, random erasing, EMA, etc.).
From Table 17, Tent+ConvNeXt-LN performs more stable than Tent+ResNet50-BN, but still suffers
several failure cases. These results are consistent with that of ResNet50-BN vs. VitBase-LN.

G.4 EFFECTIVENESS OF MODEL RECOVERY SCHEME WITH TENT AND EATA

In this subsection, we apply our Model Recovery scheme to Tent (Wang et al., 2021) and EATA (Niu
et al., 2022a). From Table 18, the model recovery indeed helps Tent a lot (e.g., the average accuracy
from 22.0% to 26.1% on ResNet50-GN) while its performance gain on EATA is a bit marginal. Com-
pared with Tent+recovery and EATA+recovery, our SAR greatly boosts the adaptation performance,
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Table 17: Results of Tent on ResNet50-BN and ConvNeXt-LN. We report Accuracy (%) on
ImageNet-C under online imbalanced label distribution shifts and the imbalance ratio is∞.

Noise Blur Weather Digital
Severity level 5 Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

ResNet50-BN 2.2 2.9 1.8 17.8 9.8 14.5 22.5 16.8 23.4 24.6 59.0 5.5 17.1 20.7 31.6 18.0
• Tent (Wang et al., 2021) 1.2 1.4 1.4 1.0 0.9 1.2 2.6 1.7 1.8 3.6 5.0 0.5 2.6 3.2 3.1 2.1

ConvNeXt-LN 52.3 52.7 52.3 31.7 18.7 42.5 38.1 54.2 58.3 50.6 75.6 56.8 32.2 39.2 60.4 47.7
• Tent (Wang et al., 2021) 26.3 11.9 36.9 31.1 12.7 14.6 5.1 7.8 5.3 6.6 79.0 67.6 1.5 68.4 65.8 29.4

Severity level 3 Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

ResNet50-BN 27.7 25.2 25.1 37.8 16.7 37.8 35.3 35.2 32.1 46.7 69.5 46.2 55.4 46.2 59.4 39.8
• Tent (Wang et al., 2021) 3.4 3.2 3.2 2.3 2.0 2.4 3.4 2.4 2.4 4.6 5.4 3.0 4.8 4.6 4.5 3.4

ConvNeXt-LN 71.1 69.8 72.4 55.2 36.6 64.3 52.8 63.2 64.0 66.0 79.4 75.8 69.1 68.5 71.9 65.4
• Tent (Wang et al., 2021) 73.4 73.5 74.4 66.8 61.6 71.4 64.2 22.6 39.5 76.8 81.2 78.9 76.8 75.6 75.8 67.5

e.g., the average accuracy 26.1% (Tent+recovery) vs. 37.2% (SAR) on ResNet50-GN, suggesting
the effectiveness of our proposed SAR.

Table 18: Results of combining model recovery scheme with Tent and EATA. We report the Accu-
racy (%) on ImageNet-C severity level 5 under online imbalanced label distribution shifts and
the imbalance ratio is∞.

Noise Blur Weather Digital
Model+Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

ResNet50 (GN) 18.0 19.8 17.9 19.8 11.4 21.4 24.9 40.4 47.3 33.6 69.3 36.3 18.6 28.4 52.3 30.6
• Tent 2.6 3.3 2.7 13.9 7.9 19.5 17.0 16.5 21.9 1.8 70.5 42.2 6.6 49.4 53.7 22.0
• Tent+recover 10.1 12.2 10.6 13.9 8.5 19.5 20.6 24.3 33.5 8.9 70.5 42.2 13.5 49.4 53.7 26.1
• EATA 27.0 28.3 28.1 14.9 17.1 24.4 25.3 32.2 32.0 39.8 66.7 33.6 24.5 41.9 38.4 31.6
• EATA+recover 26.1 31.0 27.2 19.9 18.5 25.7 25.7 35.9 28.6 40.4 68.2 35.3 27.6 42.9 40.9 32.9
• SAR (ours) 33.1 36.5 35.5 19.2 19.5 33.3 27.7 23.9 45.3 50.1 71.9 46.7 7.1 52.1 56.3 37.2

VitBase (LN) 9.4 6.7 8.3 29.1 23.4 34.0 27.0 15.8 26.3 47.4 54.7 43.9 30.5 44.5 47.6 29.9
• Tent 32.7 1.4 34.6 54.4 52.3 58.2 52.2 7.7 12.0 69.3 76.1 66.1 56.7 69.4 66.4 47.3
• Tent+recover 40.3 10.1 42.4 54.4 52.3 58.1 52.2 31.6 39.2 69.3 76.1 66.1 56.7 69.4 66.4 52.3
• EATA 35.9 34.6 36.7 45.3 47.2 49.3 47.7 56.5 55.4 62.2 72.2 21.7 56.2 64.7 63.7 50.0
• EATA+recover 35.9 34.6 36.7 45.3 47.2 49.3 47.7 56.5 55.4 62.2 72.2 21.7 56.2 64.7 63.7 49.9
• SAR (ours) 46.5 43.1 48.9 55.3 54.3 58.9 54.8 53.6 46.2 69.7 76.2 66.2 60.9 69.6 66.6 58.1
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