
Supplementary Materials for “Pareto-aware Neural Architecture Generation for
Diverse Computational Budgets”

Yong Guo, Yaofo Chen, Yin Zheng, Qi Chen, Peilin Zhao, Junzhou Huang, Jian Chen, Mingkui Tan*

South China University of Technology, Tencent AILab, University of Adelaide
{guo.yong, sechenyaofo}@mail.scut.edu.cn, yzheng3xg@gmail.com, qi.chen04@adelaide.edu.au,

{masonzhao, joehhuang}@tencent.com, {ellachen, mingkuitan}@scut.edu.cn

In the supplementary, we provide more discussions, more implementation details, and more experimental results of the
proposed Pareto-aware Neural Architecture Generator (PNAG). We organize the supplementary as follows.

• In Section A, we give more details of learning the architecture generator with entropy regularization. Moreover, we also
provide the derivations of the gradient w.r.t. the objective function J(θ).

• In Section B, we provide more discussions on the proposed Pareto dominance rule d
(
β1, β2, B

)
.

• In Section C, we provide more discussions on the pairwise ranking loss L(w).

• In Section D, we depict more details on the model design of the proposed PNAG, including both the architecture
generator f(B; θ) and the architecture evaluator R(·|B;w).

• In Section E, we provide more implementation details of the proposed PNAG.

• In Section F, we show the convergence curves of the architecture generator and the architecture evaluator.

• In Section G, we show the latency histograms of the architectures generated by PNAG under diverse budgets.

• In Sections H and I, we provide more search results on CPU and GPU devices, respectively.

• In Section J, we visualize all the generated architectures on three hardware devices.

A. Learning Architecture Generator with Entropy Regularization

To solve the problem (2), we use a policy gradient method to learn the architecture generator. To encourage exploration,
we introduce an entropy regularization term H(·) to measure the entropy of the policy. Thus, the objective becomes

J(θ)=EB∼B

[
Eα

B
∼π(·|B;θ) [R (αB|B;w)]+λH

(
π(·|B; θ)

)]
, (A)

where λ is a hyper-parameter. In each iteration, we first sample {Bk}Kk=1 from the distribution B, and then sample N
architectures {α(i)

Bk
}Ni=1 for each budget Bk. Thus, the gradient of the objective for the generator w.r.t. θ becomes

∇θJ(θ)≈
1

KN

K∑
k=1

N∑
i=1

[
∇θ log π(α

(i)
Bk

|Bk; θ)R(α
(i)
Bk

|Bk;w)

+ λ∇θH(π(·|Bk; θ))
]
.

(B)

*Corresponding author.

Proof of the Relation in Eqn. (B). The objective function of the architecture generator in PNAG can be formulated as

J(θ) = EB∼B

[
Eα

B
∼π(·|B;θ) [R (αB|B;w)] + λH

(
π(·|B; θ)

)]
=

∑
B

p(B)

∑
α

B

π(αB|B; θ)R (αB|B;w) + λH
(
π(·|B; θ)

) .
(C)

Let p(B) be the probability to sample a specific latency B from the distribution B. The gradient of the objective function
w.r.t. θ can be computed by

∇θJ(θ) =
∑
B

p(B)

∑
α

B

∇θπ(αB|T ; θ)R (αB|B;w) + λ∇θH
(
π(·|B; θ)

)
=

∑
B

p(B)

∑
α

B

π(αB|B; θ)∇θ log π(αB|B; θ)R (αB|B;w) + λ∇θH
(
π(·|B; θ)

)
= Eα

B
∼π(·|B;θ),B∼B

[
∇θ log π(αB|B; θ)R (αB|B;w) + λ∇θH

(
π(·|T ; θ)

)]
≈ 1

KN

K∑
k=1

N∑
i=1

[
∇θ log π(α

(i)
Bk

|Bk; θ)R(α
(i)
Bk

|Bk;w) + λ∇θH(π(·|Bk; θ))
]
.

(D)

□

B. More Discussions on the Pareto Dominance Rule
In this section, we discuss the proposed Pareto dominance rule, which determines whether an architecture is better than

another under diverse budgets. Let B be a computation budget. Given any two architectures β1, β2, if both of them satisfy
the budget constraints (namely c(β1) ≤ B and c(β2) ≤ B), then β1 dominates β2 if Acc(β1) ≥ Acc(β2). Moreover, when
at least one of β1, β2 violates the budget constraint, clearly we have that β1 dominates β2 if c(β1) ≤ c(β2). Formally, we
define the Pareto dominance function d

(
β1, β2, B

)
to reflect the above rules:

d
(
β1, β2, B

)
=

1, if (c(β1) ≤ B ∧ c(β2) ≤ B)

∧ (Acc(β1) ≥ Acc(β2));

−1, else if (c(β1) ≤ B ∧ c(β2) ≤ B)

∧ (Acc(β1) < Acc(β2));

1, else if c(β1) ≤ c(β2);

−1, otherwise.

(E)

Based on Eqn. (E), we have d(β1, β2, B) = −d(β2, β1, B) if β1 ̸= β2. If β1 = β2 and they have exactly the same
accuracy and computational cost. We will have h(β1, β2, B) = h(β2, β1, B) = 1, which implies that we cannot determine
which architecture is better. In this case, these comparisons would inevitably influence the training of the architecture
evaluator. To avoid this, we directly omit the architecture pairs with the same architectures in the training.

It is worth noting that the accuracy constraint Acc(β1) ≥ Acc(β2) plays an important role in the proposed Pareto domi-
nance function d

(
β1, β2, B

)
. Without the accuracy constraint, we may easily find the architectures with very low computa-

tional cost and poor performance (See results in Table 2 of the main paper).

C. More Discussions on the Pairwise Ranking Loss
In this section, we provide more discussions on the pairwise ranking loss to train the architecture evaluator. Based on the

Pareto dominance rule, we learn an architecture evaluator to predict the reward R(·|B;w) to guide the search process. To
this end, we randomly sample M architectures from the search space Ω and construct M(M − 1) architecture pairs after

omitting the pairs with the same architectures. Given K different budgets, we train the architecture evaluator by minimizing
the following loss function

L(w) =
1

KM(M−1)

K∑
k=1

M∑
i=1

M∑
j=1,j ̸=i

ϕ
(
(R(βi|Bk;w)−R(βj |Bk;w)) · d(βi, βj , Bk)

)
, (F)

where ϕ(z) = max(0, 1 − z) is the hinge loss function. The goal of minimizing Eqn. (F) is to make the architecture
evaluator R(βi|Bk;w) rank different architectures under the budget w.r.t. Bk. To this end, given any two architectures βi

and βj , we use the hinge loss ϕ(·) to force the predicted ranking result R(βi|Bk;w) − R(βj |Bk;w) to be consistent with
the ranking result d(βi, βj , Bk) obtained by the Pareto dominance rule. Based on the pretrained evaluator, we are able to
evaluate architectures under any given budget.

Select
Depth

LSTM LSTM LSTM

Select
Width

Select
Kernel Size

(a) Architecture of the generator model f(B; θ).

𝐵

FC + ReLU

FC + ReLU

FC + ReLU

𝛼!
𝐛 = 𝑔(𝐵)

(b) Architecture of the evaluator model R(·|B;w).

Figure A. Architectures of the generator and the evaluator models in our PNAG. (a) We produce an architecture by sequentially decide the
depth, width and kernel size via the generator f(B; θ) with a LSTM model. (b) The evaluator R(·|B;w), consisted of three fully-connected
layers, takes an architecture β and a budget B as inputs and outputs the predicted performance.

D. Architectures of the Generator Model f(B; θ) and the Evaluator Model R(·|B;w)

In this section, we depict the detailed model design of the architecture generator and the architecture evaluator.
Architecture of the Generator Model f(B; θ). Following [9, 15], we represent an architecture as a sequence of tokens

(each token denotes a setting of a specific layer, e.g., width or kernel size). Thus, the architecture generation problem can be
formulated as a sequential decision making problem, i.e., sequentially predicting the tokens. To make sequential decisions,
we build our generator model f(B; θ) with a LSTM model (See Fig. A). To be more specific, our PNAG takes a budget B as
input and generates architectures by sequentially predicting the token sequences, including depth, width, and kernel size.

Architecture of the Evaluator Model R(·|B;w). To learn PNAG, we need to evaluate architectures under diverse budgets
to provide the reward signals. To this end, we build an architecture evaluator model which takes an architecture β and a budget
B as inputs and predict the performance R(·|B;w) of β under the budget B. In practice, we build the architecture evaluator
R(·|B;w) with a three-layer fully connected network and each of them is followed by a ReLU [8] activation layer. We set
the number of intermediate neurons to 512.

E. More Implementation Details
Search space. Following [1], we use MobileNetV3 [4] as the backbone to build the search space [1,5]. We divide a network
into several units. To find promising architectures, we allow each unit to have 1) any numbers of layers (i.e., depth) chosen
from {2, 3, 4}, 2) any width expansion ratios in each layer (i.e., width) chosen from {3, 4, 6}, and 3) any kernel sizes chosen
from {3, 5, 7}. We build the model with 5 units. Thus, there are 3×3 combinations of widths and kernel sizes for each layer.
Training the supernet. To accelerate the training of supernet, we follow [14] to randomly choose 100 classes from original
1000 classes in ImageNet for training and train the supernet with progressive shrinking strategy [1] for 90 epochs. We treat
80% of these data as the training set to train the supernet and the rest 20% as the validation set to measure the validation
accuracy of candidate architectures (we report such validation accuracy in Figs. 1 and 4 of the main paper). We consider
the original ImageNet validation set as the test data and report the test accuracy of candidate architectures on them in all the
other tables and figures. Based on a NVIDIA V100 GPU, the training process of the supernet takes around 15 GPU hours
(i.e., 0.6 GPU days).
Training architecture evaluator. We collect M=16, 000 architectures by uniformly sampling architectures from the search
space Ω (See Fig. 5 in the main paper) following [1] and obtain the latency ranges on three hardware devices. We deploy

these architectures to different devices and measure the latency over a batch of images. Specifically, we measure the latency
on mobile and CPU devices with a batch size of 1. Since the inference on GPU is too fast to obtain the accurate latency, we
measure the latency with a batch size of 64 on NVIDIA TITAN X. We compute the accuracy Acc(·) on our validation set
(i.e., 20% samples of 100 selected classes in ImageNet). We train the architecture evaluator for 250 epochs. The learning
rate is initialized to 0.1 and decreased to 1×10−3 with a cosine annealing. Following [1], we train two predictors to predict
the latency and accuracy, respectively. We set the dimension of the budget embedding to 64. We emphasize that training the
architecture evaluator is very efficient and only takes less than 0.2 GPU hours.

Training architecture generator. We train the model for 120k iterations using an Adam optimizer with a learning rate
of 3 × 10−4. Following ENAS [9], we sample N=1 architecture at each iteration and find it works well in practice. We
select K=10 latency budgets by evenly dividing the range. We add an entropy regularization term to the reward weighted
by 1×10−3. Note that training the architecture generator approximately takes 2 GPU hours. When evaluating the searched
architectures, following [1,7], we first obtain the parameters from the OFA full network and then finetune them for 75 epochs
to obtain the final performance.

F. Convergence Curves of the Architecture Generator and the Architecture Evaluator
In this section, we show the convergence curves of the generator model and the evaluator model in Fig. B. As shown

in Fig. Ba, by minimizing the pairwise ranking loss, the architecture evaluator is able to converge very fast. As for the
architecture evaluator, based on the proposed Pareto dominance rule, the architecture evaluator would gradually reduce the
pairwise ranking loss (See Fig. Bb).

0 20 40 60 80 100 120
Iteration (1000)

0

10

20

30

40

Pa
re

to
 D

om
in

an
ce

 R
ew

ar
d

Architecture Generator

(a) Reward evolution of the architecture generator.

0 50 100 150 200 250
Epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

Pa
irw

is
e

R
an

ki
ng

 L
os

s

Architecture Evaluator

(b) Training loss evolution of the architecture evaluator.

Figure B. Convergence curves of the architecture generator and the architecture evaluator.

G. Latency Histograms of the Generated Architectures under Diverse Budgets
In this section, we show the latency histograms of the generated architectures by OFA-MO [12] and our PNAG under 5

latency budgets. We show the results in Fig. C. From these figures, our PNAG is able to produce the architectures that satisfy
the corresponding budget with a higher probability than OFA-MO under different budgets. As mentioned in Section 4.3 in
the paper, even if there exist only a few architectures whose latency is lower than 80ms, we still produce a lot of architectures
satisfying the budget constraint. These results demonstrate the effectiveness of the proposed method.

H. Architecture Search for CPU Devices
We further exploit our PNAG to generate architectures under the latency budgets evaluated on a CPU device (Core i5-

7400). Similar to the experiments for mobile devices, we evaluate our PNAG under 5 latency budgets, i.e., {30ms, 35ms,
40ms, 45ms, 50ms}. As shown in Fig. D, our PNAG yields a large performance improvement over the considered two vari-
ants, i.e., EVO and NAS-MO, under diverse budgets. Moreover, our PNAG also outperforms popular NAS based (MnasNet,
OFA∗) and manually designed architectures (MobileNetV2, MobileNetV3, and EfficientNet). As for the quantitative com-
parisons, in Table 1, our PNAG consistently yields the best results across all the considered latency budgets. To be specific,
given a small latency budget B=35ms, our PNAG-35 yields better accuracy than the compared NAS methods with much

(a) Generation results with B=80ms. (b) Generation results with B=110ms. (c) Generation results with B=140ms.

(d) Generation results with B=170ms. (e) Generation results with B=200ms.

Figure C. Comparisons of the architecture generation results given different resource budgets on mobile device.

lower search cost. Given a relatively large budget B=50ms, our PNAG-50 yields the same accuracy (80.5%) as the best
result on mobile devices (i.e., PNAG-200). This indicates that our PNAG generalizes well across the latency budgets based
on different hardwares. Overall, these results demonstrate that our PNAG is able to generate very competitive architectures
while satisfying diverse latency budgets.

I. Architecture Search for GPU Devices
Besides the mobile and CPU devices, we also consider GPUs and adopt the latency on them as the computational budget.

Since the inference speed on GPU is much faster than mobile processor and CPU, we measure the latency of deep models
on a NVIDIA TITAN X GPU with a batch size of 64. In this experiments, we compare different architecture design/search
methods under the budgets of {90ms, 115ms, 140ms, 165ms, 190ms}. As shown in Fig. E, similar to the results on mobile
and CPU devices, our PNAG outperforms existing methods and the constructed variants by a large margin. We also reported
the detailed comparisons in terms of accuracy and computational cost in Table 2. Again, compared with both the hand-crafted
methods (e.g., MobileNetV2 [11] and EfficientNet [13]) and NAS methods (e.g., ENAS [9] and MnasNet [12]), our PNAG
consistently produces better architectures under diverse budgets. These results further emphasize the generalization ability
of our PNAG to the latency budgets evaluated on different hardware devices.

J. Visualization of the Generated Architectures
In this section, we visualize the architectures generated by PNAG under different budgets. We show the generated archi-

tectures on mobile phone, CPU, and GPU in Figures F, G, and H, respectively. For convenience, we use “Architecture-T -
Hardware” to represent the generated architecture under the budget w.r.t. T on a specific hardware platform, e.g., PNAG-80-
Mobile. From these figures, our PNAG tends to produce the architectures with larger depth, width, and kernel size under a
larger budget constraint. More critically, from Tables 1, 2, 3, the resultant architectures often have the latencies very close to
the considered budget. These results show that our method is able to sufficiently exploit the given resource budget to produce
promising architectures.

Table 1. Comparisons with state-of-the-art architectures on Intel Core i5-7400 CPU. ∗ denotes the best architecture reported in the original
paper. “-” denotes the results that are not reported. All the models are evaluated on 224× 224 images of ImageNet.

Architecture Latency (ms) Test Accuracy (%) #Params (M) #MAdds (M) Search Cost
Top-1 Top-5 (GPU Days)

MobileNetV2 (1.0×) [11] 28.6 72.0 - 3.4 300 -
MobileNetV3-Large (1.0×) [4] 22.6 75.2 - 5.4 219 -

FBNet-C [14] 25.7 74.9 - 5.5 375 9.0
SGNAS-B [6] - 76.8 - - 326 0.3

EVO-30 29.1 77.9 93.8 7.9 385 0.7
NAS-MO-30 29.7 77.5 93.7 6.6 353 0.7

PNAG-30 (Ours) 29.7 78.3 94.1 7.6 335 0.7

ProxylessNAS-CPU [2] 34.6 75.3 - 4.4 438 8.3
MnasNet-A1 (1.4×) [12] 34.6 77.2 93.5 6.1 592 ∼3792

EVO-35 34.5 78.5 94.3 8.2 354 0.7
NAS-MO-35 34.7 78.3 94.0 7.9 478 0.7

PNAG-35 (Ours) 34.5 79.4 94.5 8.4 431 0.7

ResNet-18 [3] 38.6 69.8 90.1 11.7 1814 -
EfficientNet B0 [13] 39.1 77.3 93.5 5.3 390 -

EVO-40 36.3 78.8 94.6 8.4 388 0.7
NAS-MO-40 39.3 78.6 94.3 8.3 491 0.7

PNAG-40 (Ours) 39.6 79.8 94.9 9.4 502 0.7

MobileNetV2 (1.4×) [11] 42.6 74.7 - 6.9 585 -
EVO-45 43.2 79.1 94.6 9.1 481 51.7

NAS-MO-45 43.7 78.8 94.4 9.3 626 0.7
PNAG-45 (Ours) 44.7 80.2 95.0 10.4 620 0.7

PONAS-C [5] 52.2 75.2 - 5.6 376 8.8
OFA∗ [1] 53.7 80.2 95.1 9.1 743 51.7
EVO-50 47.4 79.3 94.7 9.1 511 0.7

NAS-MO-50 46.7 78.9 94.4 9.1 632 0.7
PNAG-50 (Ours) 48.9 80.5 95.1 10.5 682 0.7

20 25 30 35 40 45 50 55 60
CPU Latency (ms)

72

74

76

78

80

Im
ag

eN
et

 T
op

-1
 A

cc
. (

%
)

MnasNet
MobileNetV2
MobileNetV3
EfficientNet
OFA*
EVO
NAS-MO
PNAG (Ours)

Figure D. Comparisons of the architectures obtained by different
methods on a Core i5-7400 CPU.

50 75 100 125 150 175 200
GPU Latency (ms)

72

74

76

78

80

Im
ag

eN
et

 T
op

-1
 A

cc
. (

%
)

MnasNet
MobileNetV2
MobileNetV3
EfficientNet
OFA*
EVO
NAS-MO
PNAG (Ours)

Figure E. Comparisons of the architectures obtained by different
methods on a NVIDIA TITAN X GPU.

Table 2. Comparisons with state-of-the-art architectures on NVIDIA TITAN X GPU. ∗ denotes the best architecture reported in the original
paper. “-” denotes the results that are not reported. All the models are evaluated on 224× 224 images of ImageNet.

Architecture Latency (ms) Test Accuracy (%) #Params (M) #MAdds (M) Search Cost
Top-1 Top-5 (GPU Days)

ProxylessNAS-GPU [2] 84.7 75.1 - 7.1 463 8.3
MobileNetV2 (1.0×) [11] 71.6 72.0 - 3.4 300 -

NAGO [10] - 76.8 93.4 5.7 - 20.0
EVO-90 88.9 77.3 93.1 5.9 332 0.7

NAS-MO-90 89.8 75.4 92.4 4.9 266 0.7
PNAG-90 (Ours) 86.9 78.3 94.0 5.7 310 0.7

MnasNet-A1 (1.4×) [12] 112.9 77.2 93.5 6.1 592 ∼3792
EfficientNet B0 [13] 115.5 77.3 93.5 5.3 390 -

ENAS [9] 110.8 73.8 91.7 5.6 607 0.5
EVO-115 105.4 78.4 94.1 8.4 388 51.7

NAS-MO-115 111.2 78.1 94.0 8.8 431 0.7
PNAG-115 (Ours) 111.2 79.3 94.6 8.9 411 0.7

EVO-140 135.7 78.9 94.4 9.1 481 0.7
NAS-MO-140 137.2 78.4 94.1 8.8 470 0.7

PNAG-140 (Ours) 138.9 79.7 94.9 9.7 510 0.7

ResNet-50 [3] 159.8 76.2 92.9 25.6 4087 -
EVO-165 164.1 79.1 94.5 10.7 597 51.7

NAS-MO-165 162.6 78.8 94.4 10.5 583 0.7
PNAG-165 (Ours) 162.7 80.3 95.0 10.5 582 0.7

NASNet-A [16] 162.3 74.0 91.6 5.3 564 ∼3
PONAS [5] 182.4 75.2 - 5.6 376 8.8

EfficientNet B1 [13] 192.7 79.2 94.5 7.8 700 -
OFA∗ [1] 204.3 80.2 95.1 9.1 743 51.7
EVO-190 188.1 79.5 94.8 11.3 687 0.7

NAS-MO-190 183.2 78.8 94.5 10.7 652 0.7
PNAG-190 (Ours) 185.5 80.4 95.0 10.4 640 0.7

M
B4

 3
x3

M
B6

 5
x5

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B3

 3
x3

M
B4

 3
x3

M
B6

 5
x5

M
B3

 3
x3

M
B6

 3
x3

M
B6

 5
x5

M
B3

 3
x3

M
B3

 5
x5

M
B4

 3
x3

M
B4

 5
x5

M
B4

 3
x3

M
B3

 7
x7

(a) PNAG-80-Mobile.

M
B6

 5
x5

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B4

 3
x3

M
B6

 5
x5

M
B6

 7
x7

M
B6

 7
x7

M
B6

 5
x5

M
B4

 3
x3

M
B4

 3
x3

M
B4

 5
x5

M
B3

 5
x5

M
B3

 5
x5

M
B3

 3
x3

M
B6

 5
x5

M
B3

 5
x5

M
B6

 3
x3

M
B6

 5
x5

(b) PNAG-110-Mobile.

M
B6

 5
x5

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B6

 3
x3

M
B6

 7
x7

M
B6

 5
x5

M
B6

 5
x5

M
B4

 5
x5

M
B6

 5
x5

M
B6

 5
x5

M
B6

 5
x5

M
B6

 3
x3

M
B3

 3
x3

M
B4

 5
x5

M
B4

 5
x5

M
B4

 5
x5

M
B3

 5
x5

M
B3

 5
x5

M
B4

 5
x5

M
B3

 5
x5

(c) PNAG-140-Mobile.

M
B6

 5
x5

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B6

 3
x3

M
B6

 7
x7

M
B6

 5
x5

M
B6

 3
x3

M
B4

 5
x5

M
B6

 7
x7

M
B6

 5
x5

M
B6

 5
x5

M
B6

 5
x5

M
B6

 5
x5

M
B6

 5
x5

M
B6

 5
x5

M
B4

 3
x3

M
B4

 5
x5

M
B6

 5
x5

M
B4

 5
x5

M
B4

 5
x5

M
B4

 5
x5

(d) PNAG-170-Mobile.

M
B6

 3
x3

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B6

 3
x3

M
B6

 5
x5

M
B6

 3
x3

M
B6

 3
x3

M
B6

 5
x5

M
B6

 3
x3

M
B6

 5
x5

M
B6

 5
x5

M
B6

 3
x3

M
B6

 7
x7

M
B6

 5
x5

M
B6

 5
x5

M
B4

 5
x5

M
B6

 5
x5

M
B6

 5
x5

M
B6

 5
x5

M
B6

 7
x7

M
B6

 5
x5

M
B6

 5
x5

(e) PNAG-200-Mobile.

Figure F. Architectures generated by PNAG on Google Pixel1 phone.

M
B3

 5
x5

M
B4

 7
x7

M
B3

 7
x7

M
B4

 5
x5

M
B4

 5
x5

M
B6

 5
x5

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B3

 5
x5

M
B4

 5
x5

M
B3

 5
x5

M
B3

 5
x5

M
B6

 3
x3

M
B6

 7
x7

M
B6

 5
x5

(a) PNAG-30-CPU.

M
B4

 7
x7

M
B6

 5
x5

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B3

 5
x5

M
B4

 5
x5

M
B6

 5
x5

M
B6

 7
x7

M
B6

 7
x7

M
B4

 3
x3

M
B6

 5
x5

M
B3

 7
x7

M
B6

 5
x5

M
B6

 7
x7

M
B6

 5
x5

M
B6

 7
x7

(b) PNAG-35-CPU.

M
B4

 5
x5

M
B6

 3
x3

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B4

 7
x7

M
B6

 5
x5

M
B6

 3
x3

M
B6

 3
x3

M
B4

 3
x3

M
B6

 7
x7

M
B6

 7
x7

M
B4

 5
x5

M
B4

 5
x5

M
B4

 7
x7

M
B6

 5
x5

M
B6

 3
x3

M
B4

 3
x3

M
B4

 7
x7

M
B4

 7
x7

(c) PNAG-40-CPU.
M

B6
 3

x3

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B6

 7
x7

M
B6

 7
x7

M
B6

 3
x3

M
B6

 7
x7

M
B6

 7
x7

M
B4

 7
x7

M
B6

 5
x5

M
B6

 3
x3

M
B6

 5
x5

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

(d) PNAG-45-CPU.

M
B6

 7
x7

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B6

 7
x7

M
B6

 5
x5

M
B6

 3
x3

M
B6

 7
x7

M
B6

 7
x7

M
B4

 5
x5

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B6

 5
x5

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B4

 3
x3

M
B4

 3
x3

(e) PNAG-50-CPU.

Figure G. Architectures generated by PNAG on Intel Core i5-7400 CPU.

M
B3

 3
x3

M
B3

 3
x3

M
B4

 3
x3

M
B4

 3
x3

M
B6

 3
x3

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B3

 3
x3

M
B4

 3
x3

M
B3

 5
x5

M
B3

 5
x5

M
B6

 5
x5

M
B6

 3
x3

M
B3

 7
x7

M
B3

 5
x5

M
B3

 7
x7

(a) PNAG-90-GPU.
M

B4
 5

x5

M
B6

 7
x7

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B4

 5
x5

M
B6

 3
x3

M
B6

 7
x7

M
B6

 7
x7

M
B6

 5
x5

M
B4

 3
x3

M
B4

 3
x3

M
B4

 3
x3

M
B4

 5
x5

M
B4

 5
x5

M
B3

 3
x3

M
B3

 3
x3

M
B3

 5
x5

M
B4

 5
x5

(b) PNAG-115-GPU.

M
B4

 5
x5

M
B6

 7
x7

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B6

 3
x3

M
B6

 7
x7

M
B6

 5
x5

M
B6

 5
x5

M
B6

 5
x5

M
B4

 3
x3

M
B4

 5
x5

M
B4

 5
x5

M
B6

 5
x5

M
B6

 5
x5

M
B4

 7
x7

M
B4

 5
x5

M
B3

 3
x3

M
B6

 7
x7

M
B6

 5
x5

(c) PNAG-140-GPU.
M

B6
 7

x7

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B6

 5
x5

M
B6

 7
x7

M
B4

 3
x3

M
B6

 5
x5

M
B6

 5
x5

M
B6

 7
x7

M
B6

 5
x5

M
B6

 5
x5

M
B6

 7
x7

M
B6

 5
x5

M
B6

 7
x7

M
B6

 5
x5

M
B4

 7
x7

M
B3

 3
x3

(d) PNAG-165-GPU.

M
B6

 3
x3

Po
ol

in
g

FC

Co
nv

 3
x3

M
B1

 3
x3

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B6

 5
x5

M
B6

 7
x7

M
B4

 3
x3

M
B6

 7
x7

M
B6

 5
x5

M
B6

 7
x7

M
B6

 5
x5

M
B6

 3
x3

M
B6

 5
x5

M
B6

 3
x3

M
B6

 7
x7

M
B6

 7
x7

M
B4

 3
x3

M
B4

 3
x3

M
B6

 5
x5

(e) PNAG-190-GPU.

Figure H. Architectures generated by PNAG on NVIDIA TITAN X GPU.

References
[1] Han Cai, Chuang Gan, and Song Han. Once for all: Train one network and specialize it for efficient deployment. In International

Conference on Learning Representations, 2020. 3, 4, 6, 7
[2] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target task and hardware. In International

Conference on Learning Representations, 2019. 6, 7
[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In IEEE Conference on

Computer Vision and Pattern Recognition, pages 770–778, 2016. 6, 7
[4] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang,

Vijay Vasudevan, et al. Searching for mobilenetv3. In IEEE International Conference on Computer Vision, pages 1314–1324, 2019.
3, 6

[5] Sian-Yao Huang and Wei-Ta Chu. Ponas: Progressive one-shot neural architecture search for very efficient deployment. arXiv
preprint arXiv:2003.05112, 2020. 3, 6, 7

[6] Sian-Yao Huang and Wei-Ta Chu. Searching by generating: Flexible and efficient one-shot nas with architecture generator. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 983–992, 2021. 6

[7] Zhichao Lu, Gautam Sreekumar, Erik Goodman, Wolfgang Banzhaf, Kalyanmoy Deb, and Vishnu Naresh Boddeti. Neural architec-
ture transfer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9):2971–2989, 2021. 4

[8] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In International Conference on
Machine Learning, pages 807–814, 2010. 3

[9] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search via parameter sharing. In
International Conference on Machine Learning, pages 4095–4104, 2018. 3, 4, 5, 7

[10] Binxin Ru, Pedro Esperanca, and Fabio Carlucci. Neural architecture generator optimization. In Advances in Neural Information
Processing Systems, 2020. 7

[11] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and
linear bottlenecks. In IEEE Conference on Computer Vision and Pattern Recognition, pages 4510–4520, 2018. 5, 6, 7

[12] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V Le. Mnasnet: Platform-
aware neural architecture search for mobile. In IEEE Conference on Computer Vision and Pattern Recognition, pages 2820–2828,
2019. 4, 5, 6, 7

[13] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In International Conference
on Machine Learning, pages 6105–6114, 2019. 5, 6, 7

[14] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and
Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 10734–10742, 2019. 3, 6

[15] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. In International Conference on Learning
Representations, 2017. 3

[16] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures for scalable image recognition.
In IEEE Conference on Computer Vision and Pattern Recognition, pages 8697–8710, 2018. 7

