ICML 2020

Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search Yong Guo*, Yaofo Chen*, Yin Zheng*, Peilin Zhao*, Jian Chen, Junzhou Huang, Mingkui Tan

Thirty-seventh International Conference on Machine Learning

BACKGROUND AND MOTIVATION

Limitations of existing neural architecture search (NAS) methods:

- The search space is often **extremely large** (*e.g.*, billions of candidate architectures), resulting in the space explosion issue.
- NAS models become hard to train and often find **sub-optimal** architectures since they only receive **limited information** in the search process.

CONTRIBUTIONS

- We propose a novel Curriculum Neural Architecture Search (CNAS) method to alleviate the training difficulties of the NAS problem incurred by the extremely large search space.
- We propose a curriculum search method that gradually incorporates the knowledge learned from a small search space.
- Extensive experiments on several benchmark data sets show that the architectures found by our CNAS significantly outperform the architectures obtained by state-of-the-art NAS methods.

SEARCH SPACE SIZE ANALYSIS

Given *B* nodes and *K* candidate operations, the size of the search space Ω can be computed by

$$|\Omega| = K^{2(B-3)} \left((B-2)! \right)^2.$$
(1)

The search space can be **extremely large** when we have a large B or K.For example, ENAS has a search space of $|\Omega| \approx 5 \times 10^{12}$ with B=8 and K=5, and DARTS has a search space of $|\Omega| \approx 2 \times 10^{11}$ with B=7 and K=8.

Increasing the number of nodes make the size of search space grow faster than increasing the number of operations.

CURRICULUM NEURAL ARCHITECTURE SEARCH TRAINING METHOD

We propose a novel Curriculum Neural Architecture Search (CNAS) to enlarge the search space by gradually increasing the number of candi**date operations** from 1 to *K*.

CURRICULUM TRAINING SCHEME

We progressively train the controller to solve the problems with **different** search spaces, which are corresponding to different stages (from 1 to K) in the training process. Let Ω_i be the search space of the *i*-th stage. The training objective in the *i*-th stage becomes

$$\max_{\theta} \mathbb{E}_{\alpha \sim \pi(\cdot;\theta,\Omega_i)} \left[\mathcal{R}\left(\alpha, w^*(\alpha)\right) \right] + \lambda H\left(\pi\left(\cdot;\theta,\Omega_i\right)\right),$$
s.t. $w^*(\alpha) = \arg\min_{w} \mathcal{L}\left(\alpha, w\right),$
(2)

- $\pi(\cdot; \theta, \Omega_i)$ denotes the learned policy *w.r.t.* Ω_i , $H(\cdot)$ evaluates the entropy of the policy, and λ controls the strength of the entropy regularization term.
- This entropy term enables CNAS to explore the unseen areas of previous search stages and thus escape from local optima.

OPERATION WARMUP

To address the issue that architectures with the **new operation** have **poor** performance, we propose an effective operation warmup method.

- When we **add a new operation**, we **fix the controller** model and only train the parameters of the super network.
- To improve the fairness of operations, we **uniformly** sample candidate architectures to train each operation with equal probability.
- The candidate architectures with the **newly added operation** achieve **compa**rable performance with the existing ones.

Algorithm 1: Training method for CNAS.

Require: The operation sequence O, learning rate η , the number of iterations for operation warmup M, the uniform distribution of architectures $p(\cdot)$, controller's policy $\pi(\cdot)$, supernet parameters w, controller parameters θ . : Initialize w and θ , $\Omega_0 = \emptyset$. 2: for i=1 to |O| do Enlarge Ω_i by adding O_i to the set of candidate operations; // Operation warmup for j=1 to M do Sample $\alpha \sim p(\alpha; \Omega_i)$; $w \leftarrow w - \eta \nabla_w \mathcal{L}(\alpha, w);$ end for while not convergent do // Update θ by maximizing the reward for each iteration on validation data do Sample $\alpha \sim \pi(\alpha; \theta, \Omega_i);$ Update the controller by ascending its gradient: $\mathcal{R}(\alpha, w) \nabla_{\theta} \log \pi(\alpha; \theta, \Omega_i) + \lambda H(\pi(\cdot; \theta, \Omega_i));$ end for // Update w by minimizing the training loss for each iteration on training data do Sample $\alpha \sim \pi(\alpha; \theta, \Omega_i);$ 18: $w \leftarrow w - \eta \nabla_w \mathcal{L}(\alpha, w).$ end for end while 22: end for

ABLATION STUDY

- Fixed-NAS: For each stage, we keep the search space fixed and train a controller from scratch.
- **CNAS-Node**: We train the controller in a growing search space by **gradually** adding new nodes.
- **CNAS (Ours)**: We train the controller in a growing search space by gradually adding new operations.

COMPARISONS WITH STOA METHODS

• Comparisons with state-of-the-art methods on CIFAR-10

Architecture	Test Accuracy (%)	Params (M)	Search Cost (GPU days)
DenseNet-BC	96.54	25.6	
PyramidNet-BC	96.69	26.0	
Random search baseline	96.71 ± 0.15	3.2	
NASNet-A + cutout	97.35	3.3	1800
NASNet-B	96.27	2.6	1800
NASNet-C	96.41	3.1	1800
AmoebaNet-A + cutout	96.66 ± 0.06	3.2	3150
AmoebaNet-B + cutout	96.63 ± 0.04	2.8	3150
DSO-NAS	97.05	3.0	1
Hierarchical Evo	96.25 ± 0.12	15.7	300
SNAS	97.02	2.9	1.5
ENAS + cutout	97.11	4.6	0.5
NAONet	97.02	28.6	200
NAONet-WS	96.47	2.5	0.3
GHN	97.16 ± 0.07	5.7	0.8
PNAS + cutout	97.17 ± 0.07	3.2	225
DARTS + cutout	97.24 ± 0.09	3.4	4
CARS + cutout	97.38	3.6	0.4
CNAS + cutout	$\textbf{97.40} \pm \textbf{0.06}$	3.7	0.3

• Comparisons with state-of-the-art methods on ImageNet

Architecture -	Test Accuracy (%)		#Params (M)	#MAdds (M)	Search Cost
	Top-1	Top-5			(GPU days)
ResNet-18	69.8	89.1	11.7	1814	
Inception-v1	69.8	89.9	6.6	1448	
MobileNet	70.6	89.5	4.2	569	
NASNet-A	74.0	91.6	5.3	564	1800
NASNet-B	72.8	91.3	5.3	488	1800
NASNet-C	72.5	91.0	4.9	558	1800
AmoebaNet-A	74.5	92.0	5.1	555	3150
AmoebaNet-B	74.0	92.4	5.3	555	3150
GHN	73.0	91.3	6.1	569	0.8
SNAS	72.7	90.8	4.3	522	1.5
DARTS	73.1	91.0	4.9	595	4
NAT-DARTS	73.7	91.4	4.0	441	_
PNAS	73.5	91.4	5.1	588	255
MnasNet-92	74.8	92.0	4.4	_	_
ProxylessNAS	75.1	92.5	7.1	_	8.3
ĊARS	75.2	92.5	5.1	591	0.4
CNAS	75.4	92.6	5.3	576	0.3

CONTACT INFORMATION AND CODE

- Email: mingkuitan@scut.edu.cn
- Code: https://github.com/guoyongcs/CNAS

