
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search
Yong Guo∗, Yaofo Chen∗, Yin Zheng∗, Peilin Zhao∗, Jian Chen, Junzhou Huang, Mingkui Tan

BACKGROUND AND MOTIVATION

Limitations of existing neural architecture search (NAS) methods:

• The search space is often extremely large (e.g., billions of candidate
architectures), resulting in the space explosion issue.

• NAS models become hard to train and often find sub-optimal architec-
tures since they only receive limited information in the search process.

CONTRIBUTIONS
• We propose a novel Curriculum Neural Architecture Search (CNAS)

method to alleviate the training difficulties of the NAS problem in-
curred by the extremely large search space.

• We propose a curriculum search method that gradually incorporates
the knowledge learned from a small search space.

• Extensive experiments on several benchmark data sets show that the
architectures found by our CNAS significantly outperform the archi-
tectures obtained by state-of-the-art NAS methods.

SEARCH SPACE SIZE ANALYSIS
Given B nodes and K candidate operations, the size of the search space
Ω can be computed by

|Ω| = K2(B−3)
(
(B − 2)!

)2
. (1)

The search space can be extremely large when we have a largeB orK.For
example, ENAS has a search space of |Ω| ≈ 5×1012 with B=8 and K=5,
and DARTS has a search space of |Ω| ≈ 2×1011 with B=7 and K=8.

Increasing the number of nodes make the size of search space grow faster
than increasing the number of operations.

CURRICULUM NEURAL ARCHITECTURE SEARCH
We propose a novel Curriculum Neural Architecture Search (CNAS) to
enlarge the search space by gradually increasing the number of candi-
date operations from 1 to K.

3

10

2

3

Stage-1

3

10

2

3

Stage-2

3

10

2

3

Stage-3

CURRICULUM TRAINING SCHEME
We progressively train the controller to solve the problems with different
search spaces, which are corresponding to different stages (from 1 to K)
in the training process. Let Ωi be the search space of the i-th stage. The
training objective in the i-th stage becomes

max
θ

Eα∼π(·;θ,Ωi) [R (α,w∗(α))] + λH (π (·; θ,Ωi)) ,

s.t. w∗(α) = arg min
w
L (α,w) ,

(2)

• π(·; θ,Ωi) denotes the learned policy w.r.t. Ωi, H(·) evaluates the entropy of the
policy, and λ controls the strength of the entropy regularization term.

• This entropy term enables CNAS to explore the unseen areas of previous search
stages and thus escape from local optima.

OPERATION WARMUP
To address the issue that architectures with the new operation have poor
performance, we propose an effective operation warmup method.

• When we add a new operation, we fix the controller model and only train the
parameters of the super network.

• To improve the fairness of operations, we uniformly sample candidate archi-
tectures to train each operation with equal probability.

• The candidate architectures with the newly added operation achieve compa-
rable performance with the existing ones.

TRAINING METHOD
Algorithm 1: Training method for CNAS.

Require: The operation sequence O, learning rate η, the number of iterations for
operation warmup M , the uniform distribution of architectures p(·),
controller’s policy π(·), supernet parameters w, controller parameters θ.

1: Initialize w and θ, Ω0 = ∅.
2: for i=1 to |O| do
3: Enlarge Ωi by adding Oi to the set of candidate operations;
4: // Operation warmup
5: for j=1 to M do
6: Sample α ∼ p(α; Ωi);
7: w ← w − η∇wL(α,w);
8: end for
9: while not convergent do

10: // Update θ by maximizing the reward
11: for each iteration on validation data do
12: Sample α ∼ π(α; θ,Ωi);
13: Update the controller by ascending its gradient:
14: R(α,w)∇θ log π(α; θ,Ωi)+λH(π(·; θ,Ωi));
15: end for
16: // Update w by minimizing the training loss
17: for each iteration on training data do
18: Sample α ∼ π(α; θ,Ωi);
19: w ← w − η∇wL(α,w).
20: end for
21: end while
22: end for

ABLATION STUDY

40 80 120 160 200 240 280 320
overall epoch

96.2

96.4

96.6

96.8

97.0

97.2

97.4

te
st

 a
cc

ur
ac

y
(%

)

Fixed-NAS
CNAS w/o Warmup
CNAS-Node
CNAS (Ours)

• Fixed-NAS: For each stage, we keep the search space fixed and train a con-
troller from scratch.

• CNAS-Node: We train the controller in a growing search space by gradually
adding new nodes.

• CNAS (Ours): We train the controller in a growing search space by gradually
adding new operations.

COMPARISONS WITH STOA METHODS
• Comparisons with state-of-the-art methods on CIFAR-10

Architecture Test Accuracy (%) Params (M) Search Cost (GPU days)
DenseNet-BC 96.54 25.6 –

PyramidNet-BC 96.69 26.0 –
Random search baseline 96.71 ± 0.15 3.2 –

NASNet-A + cutout 97.35 3.3 1800
NASNet-B 96.27 2.6 1800
NASNet-C 96.41 3.1 1800

AmoebaNet-A + cutout 96.66 ± 0.06 3.2 3150
AmoebaNet-B + cutout 96.63 ± 0.04 2.8 3150

DSO-NAS 97.05 3.0 1
Hierarchical Evo 96.25 ± 0.12 15.7 300

SNAS 97.02 2.9 1.5
ENAS + cutout 97.11 4.6 0.5

NAONet 97.02 28.6 200
NAONet-WS 96.47 2.5 0.3

GHN 97.16 ± 0.07 5.7 0.8
PNAS + cutout 97.17 ± 0.07 3.2 225

DARTS + cutout 97.24 ± 0.09 3.4 4
CARS + cutout 97.38 3.6 0.4
CNAS + cutout 97.40 ± 0.06 3.7 0.3

• Comparisons with state-of-the-art methods on ImageNet

Architecture Test Accuracy (%) #Params (M) #MAdds (M) Search Cost
Top-1 Top-5 (GPU days)

ResNet-18 69.8 89.1 11.7 1814 –
Inception-v1 69.8 89.9 6.6 1448 –
MobileNet 70.6 89.5 4.2 569 –
NASNet-A 74.0 91.6 5.3 564 1800
NASNet-B 72.8 91.3 5.3 488 1800
NASNet-C 72.5 91.0 4.9 558 1800

AmoebaNet-A 74.5 92.0 5.1 555 3150
AmoebaNet-B 74.0 92.4 5.3 555 3150

GHN 73.0 91.3 6.1 569 0.8
SNAS 72.7 90.8 4.3 522 1.5

DARTS 73.1 91.0 4.9 595 4
NAT-DARTS 73.7 91.4 4.0 441 -

PNAS 73.5 91.4 5.1 588 255
MnasNet-92 74.8 92.0 4.4 - -

ProxylessNAS 75.1 92.5 7.1 - 8.3
CARS 75.2 92.5 5.1 591 0.4
CNAS 75.4 92.6 5.3 576 0.3

CONTACT INFORMATION AND CODE

• Email: mingkuitan@scut.edu.cn

• Code: https://github.com/guoyongcs/CNAS

